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Executive Summary 

The goal of this report was to develop a simplified planning tool that could be used to 
assess the changes in commute patterns likely to results from the implementation of 
future HOT lanes in the Atlanta metropolitan area.  The contents of this report, and the 
spreadsheet models derived for this report, are derived directly from the doctoral 
dissertations of Dr. Sara Khoeini and Dr. Adnan Sheikh, who completed and defended 
their dissertation work in 2014 and 2015, respectively (Khoeini, 2014; Sheikh, 2015).  
Modelers are encouraged to read both of these dissertations to better understand the 
extent of the data and complexity of the various modeling methods applied to the corridor 
usage data. 

This report summarizes a case study analysis of the conversion of a high-occupancy 
vehicle (HOV) carpool lane to a high-occupancy toll (HOT) lane, implemented along 
15.5 miles of Atlanta I-85 on Oct, 1 2011.  The researchers used 1.5 million license plate 
observations, collected over two-year study period before and after HOV-to-HOT 
conversion, to identify the observed commutershed, or catchment area of commuters, for 
this facility.  The revealed responses of commuters to the HOT conversion were evident 
in the changes of their choice to move into the general purpose lane from the HOT lane, 
move from the carpool lane into the general purpose lane, or continue to use the managed 
lane or general purpose lane after conversion.  The license plate data also revealed 
changes in use patterns across the spatial domain before and after the lane conversion. 

In the first part of this report, the researchers explore the correlations between changes in 
travel behavior and the socio-spatial characteristics of the commuters.  The team then 
matched license plate data to aggregate Census demographic data to implement an 
aggregate-level socio-spatial analysis of the impacts of the Atlanta I-85 HOV to HOT 
conversion across demographic groups and socio-economic attributes.  This report 
presents a spreadsheet-based implementation of the Khoeini (2014) modeling results that 
can be used for planning purposes to assess future managed lane implementation.  The 
model predicts the observed change in managed lane use over the four-hour morning and 
evening peak periods.  The model predicts a decrease in overall managed lane use over 
the four-hour peak, in part because fewer individuals will pay to use the HOT lane on the 
shoulders of the peak (there is already enough capacity on the general purpose lanes).  
The higher-level of use during the peak-of-the-peak, when congestion is highest, coupled 
with a decrease in lane use overall for the four-hour period, can be used in tolling and 
revenue studies.  The results of the Khoeini (2014) dissertation will also enhance the 
ability of modelers to integrate managed lanes into travel demand models, with respect to 
travel demand response to user characteristics.  Khoeini’s (2014) dissertation also 
introduces a comprehensive modeling framework for socioeconomic analysis of managed 
lanes.  The methods developed through her work can inform future Traffic and Revenue 
Studies and help to better predict the socio-spatial characteristics of the target market 
once transferability of the models are confirmed. 
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1 Background Literature Review 

The literature review for this report is derived from the doctoral dissertations of Dr. Sara 
Khoeini and Dr. Adnan Sheikh, who completed their dissertation work in 2014 and 2015, 
respectively (Khoeini, 2014; Sheikh, 2015).  The literature review elements are broken 
into background discussions on macro-modeling of corridor-level commuter response 
and micro-modeling of individual-level commuter response.  The macro-modeling 
methods primarily focus on identification of the commutershed, or catchment area, of 
commuters that will respond to changes in managed lane operation.  Macro-level 
analyses are used in tolling and revenue studies to assess the likely aggregate responses 
of commuters choosing to use the managed lane or general purpose lanes as a function of 
socio-economic variables.  The micro-modeling literature is more focused on the 
derivation of individual commuter response to changes in price and congestion levels.  
Such micro-level models can be useful in setting real-time toll prices designed to 
maximize vehicle throughput, maximize revenues, minimize emissions, or implement any 
other or combined optimization function. 

1.1 Macro-Modeling Literature 

To date, most studies about HOT lanes socio-economic impact have focused on stated 
preferences toward the use of HOT lanes (Ross et al., 2008, Burris et al., 2007; Dill and 
Weinstein, 2007; King et al., 2007; Douma, et al., 2005; Munnich and Loveland, 2005; 
Hultgren and Kawada, 1999; Sullivan, 1998; Supernak, and Golob, 2002).  For example, 
the first comprehensive study conducted by Sullivan and associates (Sullivan, 1998) 
primarily analyzed the impacts of the HOT lanes on travelers’ choice, and assessed public 
opinions on value pricing. 

Although stated-preference surveys have served as the primary basis for socioeconomic 
analysis of pricing systems, these studies have mainly been conducted before the project 
implementation, and in some cases did not match with the revealed-preferences (Hultgren 
and Kawada, 1999; Munnich and Loveland, 2005).  Moreover, the sample sizes are very 
small and, given the basic methods for collecting stated-preference data, may be biased if 
respondents provide answers they believe researchers expect to hear.  The other problem 
with previous stated-preference studies is the lack of solid statistical analysis in modeling 
decision making in response to the pricing. 

A few recent studies have touched upon the factors that are associated with HOT lane 
usage, using more advanced statistical methods.  However, almost all of the studies 
conducted statistical modeling based upon the stated-preference/travel diary surveys from 
a small sample of the population.  For example, Li, et al., (2007) examined the 
determinants of HOT lane use with the first comprehensive survey data (sample size = 
759) on the State Route 91 Express Lanes in California using multivariate logistic 
regression.  

As with socioeconomic impact assessment studies, lane use usage studies are usually 
based on small samples.  Model goodness of fit is low, and study results are not 
consistent across different studies.  For example, while income was consistently 



 

5 

significant in predicting managed lane usage across all of the studies, the magnitude of 
the predicted impacts differed considerably.  Moreover, age and gender were not 
significant across all of the studies (Burris, et al., 2012; Devarasetty, et al., 2012; Li, 
2007).  Other critical socioeconomic variables, such as ethnicity, have never been 
identified as significant in previous studies.  More importantly, because these studies did 
not have data to study changes in users’ choice in response to pricing over a long enough 
time period, they lack the power to respond to the main environmental justice question 
which is looking at the disproportionately adverse impact across demographic groups. 

The main data source for the development and calibration of the Atlanta travel demand 
model used in the traffic and revenue study for Atlanta was a household travel survey of 
eight thousand households, conducted for the Atlanta Regional Commission (ARC) from 
April 2001 through April 2002 (Jacobs, 2009).  However, the HOT lane usage patterns 
are likely to be significantly different from general corridor usage patterns.  Moreover, 
the socioeconomic analysis was conducted at the county level by simply assessing 
county-level socio-economic characteristics and their trends over time, without any link 
back to previous projects.  Such limited methods do not provide adequate arguments for 
the potential market share of a managed lane.  Use of the standard travel demand 
modeling approach to forecast demand for the HOT lane under operating conditions that 
included pricing, and market sector response to pricing, has not been inadequate.  To 
date, HOT lane demand still exceeds capacity under the maximum toll price on the 
Atlanta I-85 HOT corridor.  Unfortunately, not enough research has been conducted to 
link the previous projects performance analytical results to the future projects traffic and 
revenue studies, especially in terms of socioeconomic impacts and targeting market. 

Over the past decade, the survey sample sizes have dropped considerably, and are more 
often now in the range of 2,500 - 10,000 households, representing less than 1% of 
households in a metropolitan area.  Furthermore, two-day travel surveys have been 
reduced to one-day travel surveys.  This is especially problematic because household 
travel patterns do not stabilize for more than 20-days (Schönfelder, et al., 2006), meaning 
that researchers must rely on very large representative cross-sectional samples to reduce 
the potential bias introduced by short-duration sampling (Xu, 2010).  The process of 
conducting surveys is very labor intensive and surveys have become very expensive, and 
more sensitive with respect to public privacy (Stopher and Metcalf, 1996).  For example, 
Atlanta Household Travel survey conducted in 2011 cost two million dollars for 
collection of about 10,278 households socioeconomic and trip data, which represents less 
than 0.5% of the metro area population (ARC, 2011).  A household travel survey by the 
Durham-Chapel Hill-Carrboro Metropolitan Planning Organization required $208 per 
completed survey (AirSage, 2013). 

Another trend in household travel surveys is increasing non-response rates.  Furthermore, 
many of the households that are non-respondents travel more than the average, or are 
larger households (Kriger, et al., 2006), which potentially creates bias in the collected 
data.  The fact that recent technology advances such as smart phones or high speed 
Internet may not be equally distributed among the population (income groups, age 
groups, etc.) could also introduce sample bias. 
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A recent major enhancement in travel data collection has been the use of passive location 
data by applying Global Positioning System (GPS) data loggers either in vehicle or hand-
held devices.  The latest advances technologies are GPS-enabled smart phones and RFID 
tag reads (Doherty, 2009).  Electronic toll collectors identify the user by reading the 
user’s RFID toll tag.  Active/interactive technologies such as computer user interfaces 
and cell-phone apps have initiated the collection of socioeconomic attributes as well as 
detailed trip characteristics. 

A joint project by researchers at IBM and MIT (Lorenzo, et al., 2012) concluded that 
fine-grained, extensive data from mobile phone networks “is providing us with a more 
comprehensive view of activity and mobility at the urban scale than travel diaries can 
possibly do on their own.  It also enables us to shed light on hitherto invisible intra-
personal variation in travel activity.”  Compared to data gathered from household travel 
surveys, cellular technology provided researchers with information about individual 
mobility with a lower collection cost, larger sample size, higher update frequency, and 
broader spatial and temporal coverage (Wang, et al., 2012).  The cost of collecting cell 
phone data is relatively low.  A recent study by the town of Sierra Vista, Arizona, 
measured travel across 80 districts, covering 16,000 square miles for 12 weekdays, and 
collected cell-phone data on more than six million trips for $10,000 (AirSage, 2013). 

Lastly, by using high-resolution cameras with manual transcription or automatic license 
plate readers (ALPRs), researchers can identify license plate numbers and then compare 
those numbers to state motor vehicle registration databases to identify the household 
represented by the observation (Colberg, 2013; Guensler, et al., 2013).  Accordingly, the 
high rate of license plate observation on each lane, route, and time period can provide 
valuable information about users travel behavior (Khoeini, et al., 2012).  Changes in 
vehicle activity are readily discernable over extended periods of time. 

While recent information technology advances and technological innovations produce 
accurate and large samples of trip information, they lack the valuable socioeconomic 
piece of information.  Marketing data have recently been introduced in airport trip 
generation studies (Kressner and Garrow, 2012) as a potential household-level 
socioeconomic data source (Khoeini, 2014).  Marketing companies collect 
household/individual-level data using credit reports and other self-report data and assign 
associated attributes to individual household addresses.  The marketing companies also 
utilize imputation models for missing variables or households.  The average cost of 
purchasing marketing data is less than 10 cents per household, which is significantly 
lower than household travel survey costs, even with the cost of procuring supplemented 
travel data (license plate data, cell phone data, etc.). 

Targeted sub-regional household stated-preference surveys in a corridor can be used to 
develop models to predict how users may respond to the implementation of HOT lanes 
(or other managed lane strategies).  However, stated-preference surveys are expensive, 
data have been sparse, and resulting models thus far have achieved mixed results at 
predicting responses.  Existing travel demand models that are based upon sparse regional 
surveys may also useful in predicting corridor response, but the stated preference data 
lack the underlying resolution that are really needed to define the likely commutershed 
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catchment area (based upon managed lane user characteristics) and potential household 
response to managed lane implementation.  On the other hand, license plate data are 
relatively easy and cheap to collect in very large numbers (millions).  When license plate 
data are combined with demographic data, it becomes possible to model the observed 
corridor use responses as a function of these socioeconomic and pricing variables.  These 
responses would be physically observed in before-and-after studies.  These statistically-
derived models should, in theory, be transferrable to new sites and new projects. 

1.2 Micro-Modeling Literature 

Studies that combine both stated-preference (survey statements of what a respondent 
would hypothetically do under certain conditions) and revealed-preference data (field 
observations of what a respondent actually did under specific conditions) are typically 
described as the most valuable for assessment of consumer response to changes in price 
or operating conditions.  The combination of methods can capture the benefits of both 
types of data and make up for the shortcomings of each method.  For revealed-preference 
data, these shortcomings include the fact that only the ‘most preferred’ option is reported, 
there may be correlation among the different variables, there may be a lack of variation in 
the data, and important factors may be excluded (Sheikh, 2015).  In the case of a 
managed lane, variables representing traffic conditions may be correlated with toll 
amounts and time savings, for example.  With revealed preference data, the underlying 
behavioral causes may not be discernable from the available data (we cannot ask the 
respondent why they changed their behavior) and often researchers want to extrapolate to 
conditions for which data have not been observed (e.g., how will a traveler respond if 
gasoline prices reach $10/gallon).  Combined studies allow researchers to reliably 
observe change and apply stated preference data to predict future responses. 

Börjesson (2008) estimated mixed logit models for departure time choice using both 
stated-preference and a form of revealed-preference data.  In this case, the revealed-
preference data was extracted from a model of the CONTRAM network in Stockholm 
network.  While the travel times from the model were simulated, they were described by 
Börjesson (2008) as “actual mean travel times.”  Börjesson (2008) describes the benefits 
of combined revealed-preference and stated-preference models, as in this case the 
revealed data are highly correlated.  The author modeled departure time choice as a 
function of travel time variability, but “high correlation of mean travel time and travel 
time uncertainty in revealed-preference data [made] accurate estimation of the trade-offs 
unfeasible.”  Börjesson (2008) later cites this “high correlation between mean travel time 
and travel time uncertainty in revealed-preference data” as a primary factor in the lack of 
travel time uncertainty studies using revealed-preference-only data.  The paper does not 
discuss whether perceptions of travel time uncertainty affect the departure time decision, 
or whether actual uncertainty is the contributing factor.  A related issue appears in the 
research proposed here, as values of toll amounts, travel time, and volumes are very 
likely to be correlated.  However, the article ultimately concludes that stated-preference 
data are “less trustworthy for trip timing analysis and forecasting,” the goals of the paper. 

Two of the most frequently cited revealed-preference studies are those by Lam and Small 
(2001) and Small (2005).  Even these studies, however, used both revealed-preference 
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data and stated-preference data.  Lam and Small (2001) used surveys asking for vehicle 
occupancy, job characteristics, and other information.  In this highly-cited study, the 
average travel times for the models were estimated using a “standard engineering 
algorithm” and volume and vehicle density from loop detectors.  The resulting travel time 
savings for the California State Route 91 lanes under examination were 5.9 minutes in 
1998, a value that Lam and Small describe as small in magnitude and which “makes 
[their] results vulnerable to measurement error.”  This value is within the same order of 
magnitude as the median travel time savings of the I-85 Express Lanes, relative to the 
entire corridor.  An important note in this study, which also relates to other loop-detector 
based studies, is that there are “many assumptions required to convert loop detector data 
into speeds estimates” (Lam and Small, 2001). 

The methodologies presented throughout this report do not have to rely on estimated 
travel times, as the data include actual travel times in both HOT and General Purpose 
lanes.  The travel time data are direct observations from the toll payment and vehicle 
monitoring system retained in the State Road and Tollway Authority (SRTA) tolling 
database. 

The study by Lam and Small (2001) used binomial logit models for the route choice 
models, and included various measures of variability.  The Lam and Small paper includes 
a discussion of the endogeneity in the models, namely in the option to switch to another 
route.  Lam and Small (2001) included time-of-day choice in their next models, but these 
supplemental data came from surveys, which cannot be repeated in the modeling work 
presented in our report.  Lam and Small (2001) also address the issue that their data only 
cover a portion of the actual trip length in two ways, by ignoring the limitation (so that 
the effects are embedded in alternative-specific constants) and by estimating missing 
travel times.  These two methods were also explored by Sheikh (2015) for the I-85 HOT 
corridor.  Finally, Lam and Small (2001) examine transponder choice and find that 
“transponder installation has its own determinants, distinct from those of the daily 
decision of whether or not to use the transponder.”  As for the route choice results, the 
authors report that “work-hour flexibility [provided by surveys] and total trip distance 
seem to influence the daily decision of which route to take” (Lam and Small, 2001). 

The Small (2005) paper estimated mixed logit models based on both revealed and stated-
preference data, with some important points for this dissertation.  Small (2005) notes that 
revealed-preference studies “have been hampered by collinearity among cost and travel-
time variables” and that “they have not accounted for heterogeneity in cost or travel time 
elasticities.”  An interesting point is that the author does not name any of these revealed-
preference studies.  Similarly, the revealed-preference data used in the study is self-
reported and comes from telephone surveys (Small, 2005). 

A number of other studies contained relevant findings for the I-85 HOT lane analytical 
work.  Liu (2007) was a rare study that used revealed-preference data, in the form of 
loop-detector data, to estimate mixed logit models of route choice.  The main 
determinants in this study were “travel time, reliability, and cost.”  The Liu (2007) study 
was also unique in that it examined values of travel time and reliability as they differed 
with departure time; that is, it did not assume them to be constant across the hours under 
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study.  Liu (2007) did not include demographics in that work, which were explored by 
Sheikh (2015) for the I-85 HOT corridor.  Hess (2005) discussed mixed logit models with 
positive coefficients for travel time; these models indicate that users gain more utility 
from longer trips.  Hess (2005) notes that this utility “gain” is typically seen as the result 
of model misspecifications or the lack of explanatory power in the data, and proposes 
other interpretations (Hess, 2005).  Goodall and Smith (2010) wrote a paper with some 
worthwhile methodological variations, such as separating “daily users” of the MnPASS 
HOT lanes from less frequent users in their models to achieve a much better fit.  The 
paper concluded that “pricing has a negligible influence” on lane use because almost 90% 
of the facility users were daily users and drivers may “use the HOT lanes as insurance 
against unanticipated congestion.”  On the I-85 Express Lanes, however, only 3.5% 
(4231 out of 120582) of transponders used the priced facility more than 200 times in 
2012, or an average of four times a week for 50 weeks of the year (Sheikh, 2015).  
Goodall and Smith (2010) also raise questions about whether current conditions or 
previous experience have a greater impact on lane use decisions. 

Because the I-85 corridor is the most heavily-monitored in the nation, the I-85 HOT lane 
use data are comprehensive.  Vehicles equipped with SRTA transponders are identified 
by multiple transponder tag readers along the corridor (about every 1/3 mile).  The data 
contain date/time stamps for each transponder reading, providing information about entry 
and egress points for each trip.  The data can be linked by SRTA back to specific 
accounts and repeat usage of the facility can be tracked, as well as the toll amount paid 
per transaction.  The data stream also provides travel times through the corridor on the 
HOT lane.  Unlike other managed lane corridors around the nation, the I-85 corridor also 
includes transponder tag readers in the general purpose lanes (at four or five points, 
depending upon direction).  This means that accurate travel times are simultaneously 
available for the HOT lane and the adjacent general purpose lanes, yielding travel time 
savings and reliability data.  Furthermore, because the transponder tag reads are available 
in both the HOT lane and general purpose lanes, the data stream allows analysts to 
identify use, and non-use of the facility by individual vehicles as a function of congestion 
levels and price.  The dissertation by Sheikh (2015) explores facility use characteristics as 
a function of price, congestion, and demographic parameters at the micro-modeling level, 
using techniques similar to those employed by Khoeini (2014) at the macro-modeling 
level. 

1.3 Literature Review Summary 

Targeted sub-regional household stated-preference surveys in a corridor can be used to 
develop models to predict how users are likely respond to the implementation of HOT 
lanes (or other managed lane strategies).  However, stated-preference surveys are 
expensive, data have been sparse, and resulting models thus far have achieved mixed 
results in reliably predicting observed response data collected after implementation.  
Existing travel demand models that are based upon sparse regional surveys are also 
useful in predicting corridor response, but the data used to develop the regional model 
lack the underlying resolution needed to define the likely commutershed catchment area 
(based upon managed lane user characteristics) and their potential response to managed 
lane implementation.  On the other hand, license plate data are relatively easy and cheap 
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to collect in very large numbers (millions).  Presuming that license plate data can be 
effectively combined with demographic data, it is possible to model the observed corridor 
use responses as a function of these socioeconomic and pricing variables (Khoeini, 2014).  
The models are based upon physically observed data collected in before-and-after studies.  
These statistically-derived models should, in theory, be transferrable to new sites and new 
projects.  Similarly, when use and non-use data are available from a managed lane 
system, refined models can be developed from observational data to assess how 
commuters respond to changes in price and congestion level at the micro-modeling, day-
to-day operational response level (Sheikh, 2015).  Macro-level models for commutershed 
assessment and micro-level models for individual consumer response to congestion and 
pricing can be used in tolling and revenue studies, designed to assess aggregate-level 
response to implementation of managed lanes, and then to assess potential pricing 
structures, designed to set tolls for efficient operation of these lanes.  These types of 
models provide two significant benefits:  1) the models are based upon very large 
samples of observed license plates, rather than small samples surveys,  2) the models are 
based upon revealed preference data (actual observation) rather than stated preference 
(opinion) data.  If the models prove accurate, demonstrated through applications in future 
corridors, license plate observational and model development methods should be 
implemented on a widespread basis.  These models would likely be further improved by 
linking the observational data with stated preference survey data collected through 
household surveys of corridor users.  

2 HOV-to-HOT Commutershed Macro-Modeling Tool 

The goal of the macro-modeling tool for HOV-to-HOT conversion analysis is to predict 
consumer use of the general purpose lanes and HOT lanes after conversion, as a function 
of observed general purpose and HOV lane use before conversion, and as a function of 
the socioeconomic attributes at the Census-tract-level along the corridor.  In essence, the 
tool is designed to assess aggregate response that can be employed in tolling and revenue 
studies.  The tool is developed through the analysis of before-and-after license plate 
observational data collected over a two-year period on the I-85 HOT corridor (Guensler, 
et al., 2013). 

Household-level survey data are expensive to collect, and often infeasible for many 
transportation projects.  Therefore the macro-modeling tool is designed to employ 
census-tract-level American Community Survey data, which are free and publicly-
available.  Census and other public data sources, such as the American Community 
Survey, do not provide demographic details at the household-level.  Nevertheless, as 
demonstrated in Khoeini (2014) these data are still useful in assessing potential aggregate 
consumer response at higher-level resolution (i.e. at the corridor level).  However, when 
reliable spatial information about individual corridor users becomes available, more 
refined data (at the household level) have the potential to significantly improve analytical 
work in travel behavior and socioeconomic studies (Khoeini, 2014, Sheikh, 2015).  
Hence, higher spatial resolution data should be used whenever the data are available and 
are demonstrated to be accurate.  Although the modeling tool presented in this report is 
based upon aggregate Census data, Khoeini’s (2014) work demonstrates that purchased 
demographic data can also be used in these modeling approaches, using the same 
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modeling tool, but applying different modeling coefficients derived through analysis of 
the higher-resolution data. 

For the research and model development in this report, license plates were observed and 
linked to neighborhood Census data at the Census-tract-level (see Sheikh, 2015).  License 
plates and household addresses are assigned unique identification numbers within the 
spreadsheet.  To address potential privacy concerns, actual license plate numbers, 
addresses, and data collector names are not retained in the working spreadsheet and are 
not presented in this report.  In the modeling tool, the salmon colored columns in the 
spreadsheet contain the final text values that substitute for the original license plates 
collected in the field, the addresses, and the names of data entry staff members (copied 
from adjacent columns, e.g. plateIDText is copied from plateID).  These columns were 
copied from the calculated values so that the final unique values could remain in the 
spreadsheet after plate and addresses are removed.  Similarly, high-resolution latitude and 
longitude values for households are perturbed (random changes to the third decimal 
place) and then retained only to the third decimal place in the final spreadsheet so that 
retained position data cannot be used to identify household locations.  Researchers that 
desire to implement the model via the spreadsheet, will need to re-activate these columns 
in the modeling tool worksheets so that new field-collected license plate and address data 
can be used. 

The report subsections that follow describe the Excel-based modeling tool derived from 
Khoeini’s (2014) dissertation.  Individual steps conducted in the model development 
include: 

• 2.1 - Collect license plate data (field observation data) 
• 2.2 - Identify and recode plates (manage duplicate observations/anonymize) 
• 2.3 - Manage data collector IDs (anonymize and retain for quality assurance) 
• 2.4 - Obtain and geocode registration data for plates to link with Census data 
• 2.5 - Identify and recode addresses (manage duplicate observations/anonymize) 
• 2.6 - Summarize lane use by unique household ID (managed vs. general purpose) 
• 2.7 - Obtain and store Atlanta Census tract data for use in data joins 
• 2.8 - Join lane use data with Census tract ID and data using geocoded address 
• 2.9 - Derive model from observational data and demographics 
• 2.10 - Apply model to observational data to predict census tract results 

 
The remainder of this chapter describes each process above and the associated worksheet 
in the spreadsheet model.  Additional chapter sections provide visualizations of the 
derived model results, including commutershed observation density plots, heat maps of 
observed changes in catchment response, and changes in distributional ellipses that define 
the commutershed. 

2.1 License Plate Data Worksheet (plateObservationData) 

The most accurate and cost-effective method for obtaining transportation facility use data 
is the collection and processing of license plate data (Khoeini, 2014).  Although travel 
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surveys can be employed to collect facility usage data, mail-out-mail-back surveys are 
relatively expensive (given the postage cost in both directions) and survey response rates 
are generally in the 5-10% range.  Survey self-selection bias, non-response bias, and 
individual question response bias are problematic in such surveys.  Surveys rely on 
stated-preference data, whereas license plate observations provide revealed-preference 
data with multiple observations in time and space, providing accurate lane use data.  
Accuracy and statistical robustness are significantly enhanced when license plate 
observation data are employed, versus using survey data or regional travel demand model 
outputs (Khoeini, 2014). 

A license plate data collection methodology was developed by the Georgia Tech research 
team for a before-and-after monitoring study for the Atlanta I-85 HOV-to-HOT 
conversion (Guensler, et al., 2013).  In this study, the research team visited five data 
collection sites each quarter for two years to assess changes in fleet composition over 
time (one year before the lane opened, and one year after the lane opened).  Each site was 
located at an overpass with a good line of sight to the corridor.  Field teams deployed 
cameras to record HD videos of the traffic stream, with the cameras focused on the rear 
of the vehicles (see Figure 1) so that license plates can be read from two lanes per camera 
view (high definition video is required to capture two lanes in one view). 

Figure 1:  License Plate Camera View and Data Entry Interface 

In the HOV-to-HOT assessment project, the research team collected video data in both 
the AM and PM peak periods (Guensler, et al., 2013).  Each peak session collected data 
for two hours: 7am-9am for the AM-peak and 4:30pm-6:30pm for the PM-peak.  Because 
traffic around the metro area generally enters Atlanta in the morning and exits Atlanta in 
the afternoon, AM-peak sessions observed traffic in-bound to the city, while PM-peak 
sessions observed traffic out-bound from the city. 

After returning to the lab, the high-resolution video was processed to record vehicle 
license plates.  The high-definition video files collected during the field deployments 
were run through a freeware program called Free Video to JPG Converter available from 
DVDVideoSoft (http://www.dvdvideosoft.com).  This program reduces the video files 
into a series of screen shots every 30th frame, equivalent to approximately two frames 
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per second.  The images were then fed into a video-processing program with a user 
interface that allows a data processor to enter the license plate number for each vehicle 
seen in the images (right panel in Figure 1 above).  Because the video-processing 
program uses frame grabs, rather than the rolling video, data entry staff can tab through 
the images rather than having to pause and re-start a video file.  The image processing 
interface results in faster processing times. 

As an undergraduate research assistant types the plate entry for each screen grab into the 
software interface, the software links each plate number to its corresponding video frame 
number, date/time stamp, lane number, location, and data collector ID (Guensler, et al., 
2013).  When a license plate is unreadable, the processor records the vehicle as “missed” 
to allow for a reliable vehicle count.  Several factors can result in a missed record when 
the video is processed.  Low light levels, blurred video, tailgating, towing, and lane 
changes were the most common reasons for missed license plates.  Using this 
methodology, license plate identification ranges from about 50%, under poor lighting 
conditions, to 95% under ideal conditions.  During data collection periods with 
reasonable lighting, typical capture rates were on the order of 70% to 80%.  Details on 
license plate data processing can be found in Katherine D’Ambrosio’s Master’s Thesis 
(2011) and a recent work zone research report prepared for the Georgia Department of 
Transportation (Suh, et al., 2013). 

Practical implementation of license plate data collection can employ the method used by 
the research team, or any reasonable alternative method, such as automated license plate 
recognition (ALPR) software (Colberg, 2013).  For example, the ELSAG Mobile Plate 
Hunter-900 (MPH-900) is a fixed ALPR system that can be mounted permanently to 
structures, such as bridges or overpasses, or can be mounted in a mobile configuration, 
typically on police vehicles (see Figure 2).  According to the manufacturer, the MPH-900 
ALPR system can read up to 1,800 plates-per-minute at 99% accuracy, and used by 
hundreds of law enforcement agencies across all fifty states per ELSAG North America 
(2013). 
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Figure 2:  ELSAG ALPR Cameras Mounted to Tripods 

As discussed above, the final output file from license plate data collection and processing 
steps includes the manually-entered (or electronically-collected) license plate characters, 
lane, date, time, location, data processor identification number, and a variety of related 
data (Table 1).  The collectedPlateData worksheet in the HOV-to-HOT Macro-Modeling 
spreadsheet contains the license plate data file collected in the before-and-after study 
(Guensler, et al., 2013) for the third quarter of 2011, at one site, in which more than 
36,000 unique license plates were processed.  Each row in the worksheet represents a 
license plate record with the associated attributes.  Actual plate numbers are replaced by 
uniqueIDs in the demonstration spreadsheet, so that the observed plate numbers can be 
omitted to address any potential privacy concerns.  Model development by Khoeini 
(2014) actually proceeded with millions of license plates (multiple dates and sites), which 
were too numerous to include in the spreadsheet. 

The keyID variable value is generated in the spreadsheet during data processing.  The 
first digit represents the data collection season (8 quarters), the second indicates location 
(5 sites), the third represents day of week (Monday, Tuesday, Wednesday, and 
Thursday), the fourth represents morning or evening session (am, pm), the fifth indicates 
lane choice (0 corresponds to HOV/HOT, and 1-5 represent the general purpose lanes, 
left to right in the travel direction), and the remainder are random digits for privacy 
considerations. 

The second step in the macro-modeling process is to match license plate data to 
household addresses for later use in joining observation data to demographic 
characteristics that will ultimately be used in the modeling processes. 
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Table 1:  License Plate Data Worksheet Variables (plateObservationData) 

Variable Name Description Notes 

keyID 
Unique record identified 

assigned in video processing 
Generated in the spreadsheet  

as described above 

date Data collection date 
Video start and date time are 

entered by the user into data entry 
software 

timeStamp 
Elapsed time since frame one of 

video at standard frame rate 
Captured automatically by data 

entry software 

frameNumber 
Elapsed frames  

from start of video 
Captured automatically by data 
entry software as elapsed frames 

plateNumber 
Plate number entered by 

research assistant 
Removed from the demonstration 

spreadsheet 

plateNumberNoSpace 
Plate number with white space 

removed for consistency 
Removed from the demonstration 

spreadsheet 

plateID 
Comes from a VLOOKUP 

equation using plateNumber in 
the uniquePlateCoding table 

Replaces the plate number in 
spreadsheet join functions so that 
the plate number can be deleted 

from retained files 

plateIDText Text copy of calculated plateID 

Used in all remaining join and 
count functions because calculated 
values (plateID) are no longer valid 

once license plates are deleted  

vehicleClass 
Vehicle class (if used for fleet 

composition research) 
Not included in the demonstration 

spreadsheet 

state Plate state entered by analyst 
Only Georgia plates are employed 

in analyses 

lane Lane number entered by analyst 
Two lanes are processed per video, 
data entry software captures lane 

number 

comments Comments entered by analyst 
User indicates the type of problem 

associated with single plate 
identification 

userName Research assistant user name 
Removed from the demonstration 

spreadsheet 

userID 

Comes from a VLOOKUP 
equation using userName 

variable in the 
uniqueUserCoding table 

Replaces actual userName in the 
spreadsheet join functions so that 

userName can be deleted from 
retained files 

userIDText 
Text copy of calculated 

addressLookup 

Used in all remaining join and 
count functions because calculated 

values (userID) are no longer 
useable once names are deleted  

dateTime 
Date and time stamp derived 

from video frame number 
Format: 

6/10/2011  11:23:00 AM 

quarterCode 
Quarter during which data were 

collected 
1 = Jan-Mar, 2 = Apr-Jun 
3 = Jul-Sep, 4 = Oct-Dec 
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Variable Name Description Notes 

site Site location number 
Coded for each site (spreadsheet 

contains data from the third quarter 
of 2011) 

amPmCode Morning vs evening peak 
Calculated by spreadsheet for  

analysis 

timeCode 
Binary time code  
(AM=0, PM=1) 

Calculated by spreadsheet for use in 
statistical analysis 

dayCode Day of week code 
Calculated by spreadsheet for use in 

statistical analysis 
 

2.2 Plate Coding Worksheet (uniquePlateCoding) 

The uniquePlateCoding worksheet is employed to anonymize the license plate data 
contained in the plateObservationData worksheet.  Every unique plate number in the 
observation data set is transferred to this worksheet so that a unique plateID can be 
assigned.  For example, plate AAA1234 (if first in the unique plate list) would be 
assigned the unique plate ID “plate_1000001.”  This way, every time the plate is 
observed, the unique plateID value can be substituted for the plate number and retained 
for public use.  Table 2 contains the variable descriptions for the uniquePlateCoding 
worksheet. 

Table 2:  License Plate Data Worksheet Variables (uniquePlateCoding) 

Variable Name Description Notes 

uniquePlateNumber 

Unique values for all plate numbers 
observed during data collection 
(eliminates multiple occurrences 

that appear in 
collectedPlateDataNoSpace) 

Removed from the 
demonstration spreadsheet 

ID 
Sequential number from 1000001 

to number of unique plates 
observed 

 

plateID 
Concatenated value of “plate_” and 

sequential number  
(e.g., plate_1000001) 

Replaces plate number in 
spreadsheet join functions so 
that the plate number can be 
deleted from retained files 

plateIDText Text copy of calculated plateID 

Used in all remaining join and 
count functions because 

calculated values of 
uniquePlateID are not useable 
once license plate numbers are 

deleted  
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2.3 User Coding Worksheet (uniqueUserCoding) 

The uniqueUserCoding worksheet is employed to anonymize the names of the data entry 
personnel (students are the “users”) in the plateObservationData worksheet.  Every 
unique user name in the observation data set is transferred to this worksheet so that a 
userID can be assigned.  For example, Aaron Alton (if first in the unique user list) would 
be assigned the unique user ID “user_1001.”  This way, every time the user appears in the 
worksheet, the unique userID can be substituted for the identifiable name and retained for 
public use.  Table 3contains the variable descriptions for the uniquePlateCoding 
worksheet. 

Table 3:  License Plate Data Worksheet Variables (uniqueUserCoding) 

Variable Name Description Notes 

uniqueUserName Research assistant user name 
Removed from the demonstration 

spreadsheet 

ID 
Sequential number from 1001 to 
number of unique plates observed 

 

userID 
Concatenated value of “user_” 

and ID number 
(e.g., user_1001) 

Replaces actual userName in the 
spreadsheet join functions so that 
user names can be deleted from 

retained files 

userIDText Text copy of calculated userID 

Used in all remaining join and 
count functions because 

calculated values for userID are 
no longer useable once names are 

deleted  
 

2.4 Registration Data Linkage Worksheet 
(registrationAddressesGeocoded) 

The next step is matching observed license plates with addresses in the Department of 
Motor Vehicles Database so that the team can identify the applicable census tract and 
census block group for the observed vehicles for use in statistical analysis.  To address 
privacy concerns, matching to the registration database is performed on a remote 
machine, by a third party.  The research team sends a plate ID and a unique key ID for 
each record.  The remote process returns the key ID and address.  These records are also 
mixed in amongst tens of thousands of extra records to ensure that the file recipient must 
have the proper keys to conduct any matching to observed plates.  In addition, this 
process ensures that none of the spreadsheets that are transferred contain both license 
plate numbers and the addresses at the same time. 

Because the license plate numbers collected are not 100% accurate, due to environmental 
conditions and human error, only license plates that can be matched to addresses in the 
Georgia registration database are considered for further analysis.  Given the very large 
numbers of plate data processed for such analyses (tens of thousands to hundreds of 
thousands of records), small random errors associated with errant plate recording or 
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geocoding simply do not affect outcomes.  Because the study only covers vehicles 
registered in Georgia, out of state vehicles are excluded from data processing 
(approximately 5% of the observed data are from out-of-state vehicles). 

Once a set of household addresses are obtained from the registration database, the 
addresses are geocoded using an ArcGIS software geocoding routine to provide a latitude 
and longitude for each address.  The latitude and longitude variables are carried to the 6th 
decimal place from the ArcGIS program for tracking purposes only.  The accuracy of 
derived address location is not this accurate (six decimal places corresponds to sub-meter 
accuracy).  Based upon previous experience, address data correspond to about 10 meter 
accuracy given the accuracy of ArcGIS address position data. 

The registrationAddressesGeocoded worksheet also carries the lane number in which the 
plate was observed, for use in trip summary calculations and later modeling work.  The 
lane number is encoded as the 5th character in the keyID during plate data entry.  This 
value is pulled back out of the keyID using the Excel Mid function and placed in the lane 
column.  This value will be used again later in the laneUseByHousehold worksheet to 
summarize the number of observations of vehicles from this household by lane number. 

The registrationAddressesGeocoded worksheet illustrates the results of the geocoding 
process.  Each row represents a household in the registration database address and 
associated latitude and longitude.  Because data are collected over multiple days, license 
plates are often observed more than once in the data set.  In addition, it is possible that 
multiple vehicles from the same household will be observed amongst the tens of 
thousands of plates.  Hence, multiple observations in the plateObservationData often 
correspond to a unique address in the registrationAddressesGeocoded worksheet.  Table 4 
contains the description of the variables in this worksheet. 

Table 4:  Registration Data Linkage Worksheet Variables 

(registrationAddressesGeocoded) 

Variable Name Description Notes 

keyID 
Unique record identified 

assigned in video processing 

Assigned automatically by 
data entry software.  Carried 

into the offsite matching 
process 

address1 Street address 
Returned from the address  

match process 

address2 Suite number 
Returned from the address  

match process 

city City 
Returned from the address  

match process 

state State 
Returned from the address  

match process 

zip 9-digit zip code 
Returned from the address  
match process (no-hyphen 

used) 
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Variable Name Description Notes 

latitude 
Accuracy to only four or fewer 

decimal places is warranted 

Output of the ArcGIS 
process (eight decimal 

places) 

longitude 
Accuracy to only four or fewer 

decimal places is warranted 

Output of the ArcGIS 
process (eight decimal 

places) 
latitudeRandTrimmed Latitude value randomly 

perturbed and trimmed to 3 
decimal places 

Perturbs location by plus or 
minus 300 meters 

longitudeRandTrimmed Longitude value randomly 
perturbed and trimmed to 3 

decimal places 

Perturbs location by plus or 
minus 300 meters 

latitudeRandTrimmedText 
Text copy of calculated 
latitudeRandTrimmed 

Carried for instructional 
purposes because latitude 

data are removed from 
working spreadsheet  

longitudeRandTrimmedText 
Text copy of calculated 
longitudeRandTrimmed 

Carried for instructional 
purposes because longitude 

data are removed from 
working spreadsheet 

lane 
Managed Lane = 0 

General Purpose Lanes = 1 - 5 
(pulled from keyID) 

Lane number is encoded in 
the keyID as the 5th digit by 

the software during data 
entry 

addressLookup Concatenated address (formula) 
Used in address lookup 

functions 

householdID 

householdID comes from a 
VLOOKUP equation using 

addressLookup in the 
uniqueAdressCoding table 

Replaces physical address in 
spreadsheet join functions so 

that the address can be 
deleted from retained files 

householdIDText 
Text copy of calculated 

addressLookup 

Used in all remaining join 
and count functions because 

calculated values 
(householdID) are no longer 
useable once address data 

are deleted  
 

2.5 Address Coding Worksheet (uniqueAddressCoding) 

The uniqueAddressCoding worksheet is employed to anonymize the physical addresses 
that are derived from the registration data worksheet (registrationAddressesGeocoded).  
Every unique address in the registrationAddressesGeocoded worksheet is transferred to 
this worksheet so that a unique household ID can be assigned to each address.  For 
example, 1201 Ash Place (if first in the unique address list) would be assigned the unique 
household ID “hh_100001.”  This way, every time the user appears in a worksheet, the 
unique householdID can be substituted for the identifiable address and retained for public 
use.  Table 5 contains the variable descriptions for the uniquePlateCoding worksheet. 
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Table 5:  Household Data Worksheet Variables (uniqueAddressCoding) 

Variable Name Description Notes 

uniqueAddress 
Unique values for all addresses 
received from registration data 

Removed from the demonstration 
spreadsheet 

ID 
Sequential number from 100001 

to number of unique plates 
observed 

 

householdID 
Concatenated value of “hh_” and 

ID number (e.g., hh_100001) 

Replaces actual address in 
spreadsheet join functions so that 

addresses can be deleted from 
retained files 

householdIDText 
Text copy of calculated  

householdID 

Used in all remaining join and 
count functions because 

calculated values for householdID 
are no longer useable once names 

are deleted  
 

2.6 Household-Level Lane Use Analysis Worksheet 
(laneUseByHousehold) 

The laneUseByHousehold worksheet summarizes the number of observations for 
each household in the HOV lane and in the general purpose lanes.   

Table 6 summarizes the variables carried in this worksheet.  All of the initial variables 
were derived previously and are the same as employed in the previous worksheets.  These 
variables are carried into this worksheet so that they can be referenced in analytical work.  
Physical address data are removed from the final files.  The counts in the HOV and 
general purpose lanes are developed using the COUNTIFS function, to count occurrences 
in the registrationAddressesGeocoded worksheet (which contains final address and lane 
use information for each observation).  The total number of observations in the 
registrationAddressesGeocoded worksheet is the count of all rows for which address, 
city, and zip code match.  The total number of HOV observations in the 
registrationAddressesGeocoded worksheet is the count of all rows where address, city, 
and zip code match, and the lane value is zero.  The total number of general purpose lane 
observations is total observations minus HOV observations. 

 
Table 6:  Lane Use by Household Worksheet Variables (laneUseByHousehold) 

Variable Name Description Notes 

ID 
Sequential ID assigned to each 

record 
 

address1 Street address 
Returned from the address  

match process 

address2 Suite number 
Returned from the address  

match process 

Address 
Concatenated address from 

address1 and address2 
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Variable Name Description Notes 

householdID 

householdID comes from a 
VLOOKUP equation using 

addressLookup in the 
uniqueAdressCoding table 

(calculates as “#N/A” in the 
spreadsheet because addresses 

were deleted for privacy) 

Replaces physical address in 
spreadsheet join functions (address 

is deleted from retained files) 

householdIDText 
Text copy of calculated 

addressLookup 

Used in all remaining join and 
count functions because calculated 
values (householdID) are no longer 

useable once address data are 
deleted  

city City 
Returned from the address  

match process 

state State 
Returned from the address  

match process 

zip 9-digit zip code 
Returned from the address  

match process (no-hyphen used) 

latitude 
Accuracy to only four or fewer 

decimal places is warranted 
Output of the ArcGIS process (eight 

decimal places) 

longitude 
Accuracy to only four or fewer 

decimal places is warranted 
Output of the ArcGIS process (eight 

decimal places) 
latitudeRand 

Trimmed 
Latitude value randomly 

perturbed and trimmed to 3 
decimal places 

Perturbs location by plus or minus 
300 meters 

longitudeRand 
Trimmed 

Longitude value randomly 
perturbed and trimmed to 3 

decimal places 

Perturbs location by plus or minus 
300 meters 

latitudeRand 
TrimmedText 

Text copy of calculated 
latitudeRandTrimmed 

Carried for instructional purposes 
because latitude data are removed 

from working spreadsheet  

longitudeRand 
TrimmedText 

longitudeRandTrimmed 
Carried for instructional purposes 

because longitude data are removed 
from working spreadsheet 

gp 
Number of household vehicle 
observations in the general 
purpose lanes (lanes 1-5) 

Total observations minus HOV 
observations 

hov 
Number of household vehicle 
observations in the HOV lane 

(lane 0) 

Count of rows in 
registrationAddressesGeocoded 
with address, city, and zip code 

match, and lane = 0 

total 
Total household vehicle 

observations in the HOV and GP 
Lanes 

Count of rows in 
registrationAddressesGeocoded 
with address, city, and zip code 

match 
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2.7 Census Tract Data Worksheet (atlantaTractData_ACS2009to13) 

The “atlantaTractData_ACS2009to13” worksheet contains socioeconomic data for all of 
the Census tracts in the Atlanta metropolitan area.  The data source is the American 
Community Survey five-year summary file (2009 to 2013).  These data were the most 
accurate and up-to-date publicly-available socioeconomic data at the time the analyses 
were prepared. 

The US Census Bureau provides publicly-available household socioeconomic data 
aggregated by geographic boundaries (block groups, tracts, counties, etc.).  Until 2000, 
household socioeconomic data were collected through decennial census long-form 
surveys, from about one in every six households.  Long-form data were not collected in 
2010.  Starting in 2005, the American Community Survey (ACS) has been annually 
collecting household socioeconomic data from a small, geographically-representative 
subset of American households.  ACS is a part of the U.S. Census Bureau's Decennial 
Census Program and is designed to provide more current demographic, social, economic, 
and housing estimates during the decade between Census data collection and to 
compensate for the discontinuation in long-form data collection. 

Each year, the ACS randomly samples around 3.5 million addresses (1% of total US 
addresses) and produces statistics that cover 1-year, 3-year, and 5-year periods for 
geographic areas in the United States and Puerto Rico.  The 5-year estimates are available 
for distinct geographies including the nation, all 50 states, DC, Puerto Rico, counties, 
places, Census tracts, and Census block groups.  The ACS Summary File data cover 
demographic, social, economic, and housing variables.  The ACS 5-year estimates 
contain additional summary levels, such as census tracts and block groups that are not 
published in the ACS 1-year and 3-year estimates. 

In the atlantaTractData_ACS2009to13 worksheet, the various socioeconomic variables 
are represented as either absolute or percentage values for each Census tract in the 
Atlanta Metro area.  Detailed descriptions of the variables can be found in ACS manuals 
and in the associated macro-level assessment dissertation by Khoeini (Khoeini, 2014).  It 
should be noted that even though 36,000 households are present in the spreadsheet, and 
1.5 million plate observations in total, there are Census tracts for which zero vehicles 
were observed.  Most of the observations come from the communities and census tracts 
along the monitored corridor (i.e. the catchment area, or commutershed).  The modeling 
process is designed to use only the data from the tracts that produce trips on the 
monitored corridor. 

The worksheet contains more than 75 demographic variables associated with each Census 
Tract.  Most of the demographic variables are presented in percentages, related to head-
of-household or the entire household.  For example, gender, age, and race of head of 
household are included as columns.  Household structure (e.g. married with children, 
single with children, etc.) work status, and education levels are also represented.  
Household income and income groups are expressed in $5k increments and larger upper 
bins.  Commute travel time bins are also provided.  More detailed descriptions of the data 
can be found in Khoeini (2014). 
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2.8 Census Data Linkage Worksheet (spatialJoinCensusTract) 

The 39,000+ observed trips are represented by individual records (keyID) in the 
spatialJoinCensusTract worksheet.  The worksheet contains the address information for 
each observation as well as the identification of the lane in which the plate was observed 
(lane column).  Address observations from the previous geocoding process (household 
locations by latitude/longitude pair) were mapped as a point layer in ArcGIS and overlaid 
on census tract polygons.  In this analytical step, the individual households were linked 
with their Census tract IDs using a spatial join function in ArcGIS.  This ultimately 
allows the publicly-available Census data for their tract to be linked to the unique 
household ID for model development and application.  Household-level data, rather than 
census tract data, can be linked to households via a similar process, when household data 
are available from surveys or commercial sources such as implemented by Khoeini 
(2014) and Sheikh (2015).  

For the purpose of census tract-level modeling, each household (point in the GIS layer) is 
joined to the Census Tract ID to which it belongs.  To create the spatial join, the 2010 
Census Tract polygon shapefile (publicly available at the TIGER website) is used.  The 
“Spatial Join” tool in ArcGIS is used to create a spatially-joined table between the 
household point layer and Census Tracts polygon layer.  The spatialJoinCensusTract 
worksheet contains the data from the spatial join output table.  For each household, the 
GEOID10 column represents the Census tract ID of the joined tract.  Table 7 provides the 
description of the variables in this worksheet. 

The next step in the process is to link the applicable census data for each tract in the 
Census tract worksheet described earlier (atlantaTractData_ACS2009to13) to each record 
for use in the model development work (discussed in the next report section). 

Table 7:  Census ID Spatial Join Worksheet (spatialJoinCensusTract) 

Variable Name Description Notes 
FID, objectID, join_ 
count, target_FID 

Numeric tracking values for the 
join process 

Not used in any analyses 

keyID 
Unique record identified assigned 

in video processing 
Assigned automatically by data 

entry software 

address1 Street address 
Returned from the address  

match process 

address2 Suite number 
Returned from the address  

match process 

Address 
Concatenated address from 

address1 and address2 
 

householdID 

householdID comes from a 
VLOOKUP equation using 

addressLookup in the 
uniqueAdressCoding table 

(calculates as “0” in the 
spreadsheet because addresses 

were deleted for privacy) 

Replaces physical address in 
spreadsheet join functions so that 
the address can be deleted from 

retained files 



 

24 

Variable Name Description Notes 

householdIDText 
Text copy of calculated 

addressLookup 

Used in all remaining join and 
count functions because 

calculated values (householdID) 
are no longer useable once 

address data are deleted  

city City 
Returned from the address  

match process 

state State 
Returned from the address  

match process 

zip 9-digit zip code 
Returned from the address  

match process (no-hyphen used) 

latitude 
Accuracy to only four or fewer 

decimal places is warranted 
Output of the ArcGIS process 

(eight decimal places) 

longitude 
Accuracy to only four or fewer 

decimal places is warranted 
Output of the ArcGIS process 

(eight decimal places) 
latitudeRand 

Trimmed 
Latitude value randomly perturbed 
and trimmed to 3 decimal places 

Perturbs location by plus or 
minus 300 meters 

longitudeRand 
Trimmed 

Longitude value randomly 
perturbed and trimmed to 3 

decimal places 

Perturbs location by plus or 
minus 300 meters 

latitudeRand 
TrimmedText 

Text copy of calculated 
latitudeRandTrimmed 

Carried for instructional purposes 
because latitude data are removed 

from working spreadsheet  

longitudeRand 
TrimmedText 

Text copy of calculated 
longitudeRandTrimmed 

Carried for instructional purposes 
because longitude data are 

removed from working 
spreadsheet 

lane 
Managed Lane = 0 

General Purpose Lanes = 1 - 5 
(pulled from keyID) 

Lane number is encoded in the 
keyID as the 5th digit by the 
software during data entry 

STATEFP10 Census code for state Linked in the spatial join 
COUNTYFP10 Census code for county Linked in the spatial join 
TRACTCE10 Census code for tract Linked in the spatial join 

GEOID10 Census geographic ID 
Linked in the spatial join and 

later used to link census tract data 
to each record 

 

2.9 Census-Tract-Level Lane Use Analysis Worksheet (laneUseByTract) 

The laneUseByTract worksheet contains the summary of pre-conversion observational 
data for each of the 1514 Census tracts (1514 rows).  The first few columns of the 
laneUseByTract worksheet contain the pre-conversion observational data aggregated by 
census tract for use in final model application.  The calculation aggregates total peak 
period trips observed for each Census tract.  Note, however, that the working spreadsheet 
provided with this report only contains data that were collected by the research team at 
one data collection location during Am and PM sessions.  The system is designed to use 
as much data as are collected in the field.  As discussed earlier, the full data set was used 
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by Khoeini (2014) to develop the final model parameters.  The 39,000+ observed trips in 
the spreadsheet are tracked by lane in the spatialJoinCensusTract worksheet were 
aggregated by Census tract ID in the laneUseByTract worksheet by using the Excel 
COUNTIFS function.  The total number of observations in the spatialJoinCensusTract 
worksheet is the count of all rows where the census tract ID matches the Census ID of the 
row in laneUseByTract.  The total number of HOV observations in the 
spatialJoinCensusTract worksheet is the count of all rows where the Census IDs match 
the Census ID of the row in laneUseByTract, and the lane value is zero.  The total 
number of general purpose lane observations in the spatialJoinCensusTract worksheet is 
the count of all rows where Census IDs match the Census ID of the row in 
laneUseByTract, and the lane value is greater than zero.  After aggregation, each Census 
tract GEOID row in the laneUseByTract worksheet contains the total number of times 
that vehicles from households in that Census tract were observed using the HOV lane 
(column hov)and general purpose lanes (column gp) prior to the managed lane 
conversion.  Lane use data aggregation could also be conducted in Access or any 
statistical software such as SPSS or SAS if desired, with the results returned to the 
spreadsheet for further analysis. 

The laneUseByTract worksheet also contains the applied results from the final Census-
tract-based modeling work that will be discussed in the report sections that follow.  The 
model parameter XB, identified in the subsequent worksheets, is applied to the Census 
tract observational data to predict the expected number of observations in HOT lanes and 
general purpose lanes after the carpool lane is converted to a HOT lane (in columns 
hot_modeled and gp_modeled, respectively).  The methodologies for developing the 
predictions are discussed in the report sections that follow and in more detail by Khoeini 
(2014). 

Table 8:  Corridor Use and Model-Predicted HOT Usage  
by Census Tract (laneUseByTract) 

Variable Name Description Notes 
tractID Census Tract ID  

gp 
General purpose lane 

observations during the baseline 
period 

Total number of general purpose 
lane observations for the Census 
tract in spatialJoinCensusTract 

hov 
Carpool lane observations  
during the baseline period 

Total number of carpool lane 
observations for the Census tract in 

spatialJoinCensusTract 

Total 
Sum of general purpose and 
carpool lane observations 

Assumes that the sum of traffic is 
conserved before and after 

conversion 

gp_modeled 
Number of trips predicted in the 

general purpose lanes after 
conversion 

Total baseline volume minus the 
predicted HOT volume below 

hot_modeled 
Number of trips predicted in the 

HOT lane after conversion 

Total baseline volume multiplied by 
the predicted probability of using 

the HOT lane 



 

26 

Variable Name Description Notes 

XB 
Predicted value for the 

exponential function of the 
regression coefficients 

Multiplied by the total baseline 
volume to predict HOT lane volume 

hotLaneProbability 
Probability of using the HOT 

lane 
Based upon the XB value for each 

census tract 

avgIncome Average income in the tract 
Found in 

atlantaTractDataACS2009to13 and 
used with dummy variables 

avgHouseholdSize 
Average household size in the 

tract 

Found in 
atlantaTractDataACS2009to13 and 

used with dummy variables 

avgCommute 
TravelTime 

Average commute time for the 
tract 

Found in 
atlantaTractDataACS2009to13 and 

used with dummy variables 

Und18Yrs_per 
Percentage of total Census tract 

population under 18 years of 
age 

Found in 
atlantaTractDataACS2009to13 and 

used with dummy variables 

A18to34Yrs_per 
Percentage of total Census tract 
population between 18 and 34 

years of age 

Found in 
atlantaTractDataACS2009to13 and 

used with dummy variables 

A35to64Yrs_per 
Percentage of total Census tract 
population between 35 and 64 

years of age 

Found in 
atlantaTractDataACS2009to13 and 

used with dummy variables 

Over65Yrs_per 
Percentage of total Census tract 
population 65 years of age or 

older 

Found in 
atlantaTractDataACS2009to13 and 

used with dummy variables 

White_per 
Percentage of households with 

white head of household 

Found in 
atlantaTractDataACS2009to13 and 

used with dummy variables 

Black_per 
Percentage of households with 

black head of household 

Found in 
atlantaTractDataACS2009to13 and 

used with dummy variables 

Asian_per 
Percentage of households with 

Asian head of household 

Found in 
atlantaTractDataACS2009to13 and 

used with dummy variables 

Otherrace_per 
Percentage of households with 
other race head of household 

Found in 
atlantaTractDataACS2009to13 and 

used with dummy variables 

Hispanic_per 
Percentage of households with 

Hispanic head of household 

Found in 
atlantaTractDataACS2009to13 and 

used with dummy variables 
 

2.10 Tract-Level Model Derivation (tractLevelModel) 

The generalized linear model (GLM) is employed in development of the macro-modeling 
tool (Khoeini, 2014).  In the analyses that follow, the dependent variable (or response 
variable) is predicted managed lane usage rate, between zero and one (π) for each Census 
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tract, which prohibits the use of ordinary least square regression.  The GLM is a flexible 
generalization of ordinary linear regression that allows for response variables to have 
other than a normal distribution.  The GLM generalizes linear regression by allowing the 
linear model to be related to the response variable via a link function (Probit, in this case) 
and by allowing the magnitude of the variance of each measurement to be a function of 
its predicted value (MacCullagh and Nelder, 1989). 

The predictor variables in the model are socioeconomic attributes at the Census tract-
level.  The Census tract-level socioeconomic data are expressed in either percentages (for 
example percent of white population in each tract) or average values (for example 
average annual household income in each tract).  After extensive experience of data 
exploration and model generation (Khoeini, 2014), the research team found that dummy 
variables work better in socioeconomic related modeling to predict travel choice.  Table 9 
shows the values used to convert the original socioeconomic attributes for each Census 
tract into dummy variables for use in model development. 

Table 9:  Final Census-Tract Demographic Dummy Variables 

near_dist_mile_bin 

2 26mi<= 

1 8mi<=  <26mi 

0 <8mi 

age_under18_bin 
1 25% <= 

0 <25% 

ethnicity_bin 

3 25% Asian< 

2 25% Hispanic< 

1 50% Black< 

0 50% White< 

married_bin 
1 50%<= married 

0 <50% married 

education_bin 
1 25%<= with BS or higher degree 

0 <25% with BS or higher degree 

income_bin 

2 21%<= have $125,000+ annual HH income 

1 The rest 

0 37%<= have <$30,000 annual income 

travelmode_bin 
1 5%<= use public transportation 

0 The rest 

TT_bin 
1 30min<= commute travel time 

0 <30min 
 

The modeled response variable is managed lane usage rate between zero and one (π), for 
each Census tract.  As mentioned above, the GLM approach generalizes linear regression 
by allowing the linear model to be related to the response variable via a link function, and 
by allowing the magnitude of the variance of each measurement to be a function of its 
predicted value.  For binary data (each license plate observation is either from the 
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managed lane or general purpose lanes), the link function maps from 0<π�<1 to ηi ∈R, 
and two link functions are commonly used:  1) Logit (Equation 1); or 2) Probit (Equation 
2); where ψ (·) is the normal cumulative distribution function (MacCullagh and Nelder, 
1989).  In this study, Logit and Probit link functions were both employed, and compared 
using goodness of fit parameters; the Probit function was selected (Khoeini, 2014). 

�� = �	
 � ��
�	��

�											  Equation 1 (Logit link function) 

�� = ��	����															  Equation 2 (Probit link function) 

The model specification, response variables, standard error coefficients, and model 
performance parameters are presented in the tractLevelModel worksheet.  Table 10 
contains the final model Census-tract-level model variables and GLM regression 
coefficients with standard errors. 

Table 10:  Tract-Level Model Variables and Regression Coefficients 

Model Parameter B 
Std. 
Error 

(Intercept) -1.455 .0137 
[near_dist_mile_bin=2.00] 0.031 .0125 
[near_dist_mile_bin=1.00] 0.045 .0061 
[near_dist_mile_bin=.00] 0a 

 
[age_under18_bin=1.00] 0.061 .0065 
[age_under18_bin=.00] 0a 

 
[ethnicity_bin=3.00] -0.109 .0168 
[ethnicity_bin=2.00] -0.085 .0086 
[ethnicity_bin=1.00] -0.356 .0160 
[ethnicity_bin=.00] 0a 

 
[married_bin=1.00] 0.042 .0083 
[married_bin=.00] 0a 

 
[Education_bin=1.00] 0.176 .0078 
[Education_bin=.00] 0a 

 
[Income_bin=2.00] 0.065 .0138 
[Income_bin=1.00] 0.063 .0124 
[Income_bin=.00] 0a 

 
[Travelmode_bin=1.00] -0.086 .0134 
[Travelmode_bin=.00] 0a 

 
[TT_bin=1.00] 0.091 .0055 
[TT_bin=.00] 0a 

 
(Scale) 1b 
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Because the model employs a link function, GLM regression coefficients (B) are not easy 
to interpret.  Coefficients must be translated using the exponent function.  When a logistic 
regression is calculated, the regression coefficient (B) is the estimated increase in the 
odds of the outcome per unit increase in the value of the exposure.  The odds-ratio is the 
exponential of the coefficient, Exp(B), and is a measure of association between an 
exposure and an outcome.  The odds-ratio represents the odds that an outcome will occur 
given a particular exposure, compared to the odds of the outcome occurring in the 
absence of that exposure.  In other words, the exponential function of the regression 
coefficient (Exp(B)) is the odds-ratio associated with a one-unit increase in the exposure 
(Szumilas, 2010). 

In practice, when there is a positive relationship between a predictor and an outcome 
(regression coefficient B > 0), the odds-ratio is greater than 1, and as the predictor B 
increases, the odds-ratio increases.  The interpretation is that when the scale predictor 
increases by one unit, the probability that the outcome happens (vs. the other alternative 
happens) increases by a factor of the odds-ratio.  Similarly, if there is a negative 
relationship between a predictor and an outcome (B < 0), the odds-ratio is less than 1, and 
as B decreases, the odds-ratio approaches zero.  For non-scale predictors, the odds-ratio 
will be interpreted as a comparison.  For example, if the predictor has two categories 
(male vs. female) the beta coefficient for one category (for example: male) will be set to 
zero and the odds-ratio for that category will be assumed to equal one, and the odds-ratio 
for the other category (in this case: female) is calculated respectively.  If the calculated 
odds-ratio for female is more than 1, say 1.2, it implies that it is the outcome is 1.2x more 
probable when the predictor is female than if the predictor is male.  The coefficients can 
be used to predict the probability that an outcome will occur, given the input values. 

In logistic regression, instead of the standard 	R� parameter used in linear regression, 
other indicators must be used to assess model goodness of fit.  The �� parameter 
measures how much the log likelihood (LL) of the fitted model improved compared to 
the null model (Equation 3).  In logistic regression, deviance is analogous to the sum of 
squares in linear regression and is a measure of lack of fit to the data (Cohen and Cohen, 
1975).  Deviance (Equation 4) is calculated by comparing a given model with the 
saturated model; a model with a theoretically perfect fit.  The Pseudo R� (Equation 5) 
shows the percentages of improvement in model fit (smaller deviance), by comparing the 
deviance of the fitted model to the deviance of the null model.  As the model fit 
improves, the deviance should decrease, and the Pseudo R� moves closer to 1.  Normally, 
the �� and ������	�� goodness of fit measures are very close, but not equal.  The AIC 
(Equation 6) is another alternative for assessing goodness of fit, where k stands for 
number of parameters in the model and smaller AIC values indicate a better goodness of 
fit.  Lastly, the Omni test examines the hypothesis of whether the built model is 
significantly better than the constant only model in predicting the response variables. 

�� =   	�!"��	#	$%���  �&�''%$	#	$%��
  	�&�''%$	#	$%��   Equation 3 

(%)�*+,%	�&�''%$	#	$%�� = −� �+   	�&�''%$	#	$%��
  	�.*'"/*'%$	#	$%�� Equation 4 
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01%"$		2� = (%)�*+,%	�!"��	#	$%���(%)�*+,%	�&�''%$	#	$%��
(%)�*+,%	�!"��	#	$%�� 								 Equation 5 

345 = �6 − � �+�  �  Equation 6 

The final model, associated parameters, and goodness of fit are presented in the 
tractLevelModel worksheet.  In this case, all models are significant, with p-value less 
than 0.001 at 95% confidence (Khoeini, 2014). 

2.11 Census-Tract-Level Model Calculations (tractLevelModelCalcs) 

The tractLevelModelCalcs worksheet contains the values of the final model input dummy 
variables for each Census tract from the tractLevelModel worksheet.  The final column in 
this worksheet (XB), presents the predicted value of the linear predictor for each tract.  
This same XB value is used in the laneUseByTract worksheet to predict HOT lane use.  
Proper transformation of the linear predictor value (column XB in the laneUseByTract 
worksheet) yields the estimated probability (column hotLaneProbability in the 
laneUseByTract worksheet) that a vehicle from the Census tract will choose to use the 
HOT lane after conversion (Khoeini, 2014).  The calculated columns presented in the 
laneUseByTract worksheet (hot_modeled and gp_modeled) represent the predicted 
number of times that users from each Census tract will use the HOT lane and general 
purpose lanes, for the same morning and afternoon peak period durations in which pre-
conversion data were collected. 

2.12 Census-Tract-Level Model Outputs (tractLevel_SE_outputs) 

The tractLevel_SE_outputs worksheet illustrates the socioeconomic attributes of the 
corridor commuters by lane type, before-and-after HOT lane conversion, in both tabular 
and graphic formats.  Because the analyses employ aggregated tract-level data, the 
attributes of the four groups are expected to be close.  The attribute that is most 
noticeably different is income, which is not surprising given the priced nature of the HOT 
lane.  Figure 3 through Figure 5 illustrate the before and after household income, travel 
time to work, and race splits for the before and after conditions by lane type. 



 

31 

 

Figure 3:  Average Before-and-After Income vs. Lane Use 

 

 

Figure 4:  Average Before-and-After commute Travel Duration vs. Lane Use 
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Figure 5:  Average Before-and-After Race vs. Lane Use 

 

2.13 Commutershed Analysis 

The concept of the commutershed, or catchment area, is regularly employed by 
researchers to estimate facility travel demand (Horner and Groves, 2007).  
Commutersheds can be developed for any transportation facility such as highways, transit 
routes, and park and ride facilities to identify potential corridor users.  As in other travel 
behavior studies, surveying has been the primary method of data collection and 
commutershed estimation.  While the small sample size of typical surveys limits the use 
of direct GIS analysis, license plate data sets are so large that they are quite amenable to 
direct GIS analysis. 

The modeling tool is based upon very large sampling of license plate data to define a 
detailed commutershed for the corridor under study.  The comparison of the before- and 
after-conversion commutersheds helps researchers better understand whether the HOT 
lane significantly impacted the spatial distribution of corridor users.  Because the HOT 
lane provides shorter and more reliable travel times, it is expected that more of the 
households that are farther away from the commutershed before conversion may begin to 
use HOT lanes on the corridor.  It is important to note that detailed commutershed 
graphics can only be generated from household-level location data.  Data aggregated to 
census tracts cannot generate such refined figures. 

The ArcGIS Point Density Function was used to develop the corridor commutershed 
maps presented in the tractLevelComutershedOutput worksheet, and in Figure 6 and 
Figure 7.  The Point Density Function calculates the density of point features around each 
output raster cell.  Conceptually, a small neighborhood is defined around each raster cell 
center, and the number of household data points that fall within the neighborhood is 
totaled and divided by the area of the neighborhood.  The population field is used to 
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weight the observation data, where the weights differentiate between households with 
different numbers of observations.  Accordingly, the weights for the households observed 
more frequently in the corridor are greater, relative to the households observed less 
frequently.  Figure 6 shows the point density map (commutershed) for the general 
purpose lanes before and after conversion.  Similarly, Figure 7 shows the commutershed 
for the managed lane before conversion (when it was a HOV carpool lane) and after 
conversion to the HOT lane. 

2.13.1 Heat Maps 

Heat maps enable researchers to visualize the changes in the corridor commutershed after 
the conversion.  To create the heat maps, a linear transformation is performed on the raw 
density values so that output values can be mutually compared.  The “Fuzzy 
Membership” function in ArcGIS transforms the input raster values to a 0 to 1 scale, 
indicating the strength of membership in a set (based on a fuzzification algorithm).  In 
this case, a linear algorithm from 0 to 1 was used (Khoeini, 2014).  A value of 1 indicates 
absolute membership and a value of 0 indicates absolute non-membership in the fuzzy set 
(ESRI, 2013). 

To compare cell Fuzzy values before and after the conversion, the raster calculator in 
ArcGIS has been used (Khoeini, 2014).  The raster calculator generates a new raster layer 
after applying the prescribed numerical function to the input layer cell values.  In this 
case, the fuzzy values before conversion have been subtracted from the fuzzy values after 
conversion, and then multiplied by 100.  The difference is multiplied by 100 to build a 
scale of impact between -100 and 100.  Cells that experienced a value of change in fuzzy 
membership of 100 had the highest possible positive change.  Cells with a value of 
change in fuzzy membership of -100 had the highest possible negative change.  A zero 
value of change implies no change in corridor usage.  The heat map for the observed data 
is contained in the tractLevelComutershedOutput worksheet, and presented below in 
Figure 8, where green indicates an increase (0 to 100 scale), and red indicates a decrease 
(0 to 100 scale) in set membership.  In the case of the I-85 conversion, general purpose 
lane use appears to have increased directly along the corridor, while managed lane usage 
increased from areas upstream of the new HOT lane.  A decrease is noted in both general 
purpose lane use and managed lane use southwest of the facility (both are red for this 
area), which may be related to route diversion to the Stone Mountain Freeway.  Some 
traffic from north of the corridor may have diverted to SR13 or GA400 as well.  
However, monitoring/survey data are not available to confirm these hypotheses. 
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Figure 6:  General Purpose Lane Commutershed Density Maps  
Before and After HOT Lane Conversion (Khoeini, 2014) 
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Figure 7:  Managed Lane Commutershed Density Maps  
Before (HOV) and After (HOT) HOT Lane Conversion (Khoeini, 2014) 
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2.13.2 Directional Distribution Ellipses 

Another method of spatial distribution analysis is Directional Distribution Ellipse (see Khoeini, 
2014).  The ellipse is referred to as the standard deviation ellipse, because the method calculates 
the standard deviation of the x coordinates and y coordinates from the mean center to define the 
axes of the ellipse.  For example, ellipses developed based on two standard distribution cover 
95% of the observations in the map.  A built-in tool in ArcGIS converts any set of point features 
to a directional distribution ellipse.  Also, the ellipse allows researchers to see whether the 
distribution of features is elongated, and hence has a particular orientation.  The ellipses for the 
general purpose lanes (before and after the conversion), HOV lane, and HOT lane are presented 
in the tractLevelComutershedOutput worksheet and in Figure 9 below.  The ellipses employ two 
standard deviations and therefore include 95% of the observed commuters. 

The directional distributional analysis is the best method to evaluate the overall directional 
displacement of the commutershed.  However, it has the disadvantage of including the areas that 
are not actually part of the real commutershed in the analysis.  Therefore, estimation error in area 
calculation is unavoidable.  Fuzzy membership methods presented earlier help resolve this 
problem and produce a more accurate estimate of the change in the area of the commutershed. 

2.14 Macro-Modeling Tool Caveats 

It is important to note that not all the commuters observed actually live in the place that they 
have registered their vehicles (Nelson et al., 2008).  Therefore, the registration address may 
differ from the actual residential address.  For example, students and young professionals may 
register their vehicle at a parent’s address to reduce insurance rates.  Couples may live together 
in the corridor, while maintaining separate addresses.  Governmental and commercial license 
plates also account for approximately 10% of the vehicles in our study.  Users of these vehicles 
may use these vehicles for their daily commute trips.  Leased vehicles are usually registered by 
the car owner household address instead of leasing company address, but not always. 

 

Based on GIS spatial tools, 87% of the registered vehicle addresses did fall within the Atlanta 
metro area.  Gwinnett County alone represented more than 66% of all the license plates.  The 
next most highly-involved counties are Fulton and DeKalb County, the other two large counties 
adjacent to the corridor.  After joining to the registration database and geocoding the addresses, 
53% of the observed license plates in the field could be matched to a valid location in Atlanta 
metro area.  However, a previous study by Granell (2002) indicated that perhaps 33% of the total 
vehicles are not registered in the same place that they begin their daily trip (especially for trips 
leaving apartment complexes).  Further investigation of registered vs. garaged locations of 
vehicles are certainly warranted. 
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Figure 8:  Heat Maps Before and After HOT Lane Conversion (Khoeini, 2014) 
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Figure 9:  Directional Distributional Ellipses Before and After HOT Lane Conversion (Khoeini, 2014) 
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The Census-tract-based modeling tool operationalized in the spreadsheet is based upon 
the before-and-after data collected for the I-85 HOV-to-HOT conversion.  Given the use 
of a large, revealed preference data set, the models derived and presented in the two 
dissertations (Khoeini, 2014; Sheikh, 2015) should, in theory, be transferrable to new 
sites and new projects in the metro area.  However, there may be corridor-specific 
relationships affecting choice that have not been identified in these modeling efforts.  As 
managed lane use data become available from new managed lane locations throughout 
the region, refined models should be developed from new observational data using the 
same general methods to reassess commuters response to managed lane addition at the 
macro-modeling level (overall response and managed lane usage) and to price and 
congestion at the micro-modeling level (day-to-day response of commuters to congestion 
and pricing). 

3 Conclusions and Recommendations 

This research presents a case study of the conversion of a high occupancy vehicle (HOV) 
carpool lane to a high-occupancy toll (HOT) lane, implemented in 15.5 miles of Atlanta 
I-85 on Oct, 1 2011.  The focus of the research was to assess the impacts of socio-spatial 
characteristics of commuters on their travel behavior and choice to use or not use the 
HOT lane.  The research team conducted the research using observational data for 1.5 
million license plates, collected over two-year study period before and after HOV-to-
HOT conversion and matched to household locations.  The license plate basis of the 
study allowed the team to control research costs associated with conducting surveys, and 
to use revealed preference data in the analyses rather than stated preference data.  The 
dissertation work by Khoeini (2014) was used to develop and implement a macro-level 
modeling tool from the before-and-after data that can be used to predict HOT lane usage 
as a function of publicly-available Census tract demographic data.  The Census-tract-
based model is operationalized in spreadsheet format for use in future corridor analysis.  
This report describes the methods used to develop the model, and the detailed content of 
the worksheets that comprise the spreadsheet modeling tool.  Purchased marketing data, 
which include detailed household socioeconomic characteristics, can also be used to 
develop more refined models when tied to the license plate observation data (Khoeini, 
2014; Sheikh, 2015). 

At the general scale, this study enhances managed lanes’ travel demand models with 
respect to users’ characteristics and introduces a comprehensive modeling framework for 
socioeconomic analysis of managed lanes.  The methods developed through this will 
inform future Traffic and Revenue Studies and help to better predict the socio-spatial 
characteristics of the target market.  At the local level, the sponsored study also 
conducted a comprehensive socio-spatial analysis of Atlanta I-85 HOV to HOT 
conversion to investigate the impact on users’ socio-economic attributes and on the 
commutershed (Sheikh, 2015).  However, operationalizing the findings from the micro-
level modeling in a spreadsheet format has proven too difficult to date. 
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The statistically-derived models presented in the two dissertations (Khoeini, 2014; 
Sheikh, 2015) should, in theory, be transferrable to new sites and new projects in the 
metro area.  However, there may be corridor-specific relationships affecting choice that 
have not been identified in the modeling efforts.  As managed lane use data become 
available from new managed lane locations in the region, refined models should be 
developed from new observational data to assess how commuters respond to changes in 
price and congestion level at the macro-modeling (overall response and managed lane 
usage) and micro-modeling levels (day-to-day response of commuters to congestion and 
pricing).  These two types of models can fuel the assessment of aggregate- level response 
to implementation of managed lanes and then the pricing structures for efficient operation 
of these lanes.  These types of models provide two significant benefits:  1) the models are 
based upon very large samples of observed license plates, rather than small samples 
surveys, and  2) the models will be based upon revealed preference data (actual 
observation) rather than stated preference (opinion) data.  If the refined models prove 
accurate, demonstrated through applications in future corridors, license plate 
observational and model development methods should be implemented on a widespread 
basis.  These models would likely be further improved by linking the observational data 
with stated preference survey data collected through regular household stated preference 
surveys of corridor users.  

3.1 HOV-to-HOT Commutershed Macro-Modeling Tool Conclusions 

Investigating the impact of users’ socio-spatial characteristics and their HOT lane travel 
behavior can provide input to policy decisions concerning future managed lane 
investments and development (tolling and revenue studies), be used to improve travel 
demand models, and to assess and respond to socioeconomic concerns (Khoeini, 2014).  
In previous studies, traveler response toward managed lanes was often estimated using 
stated-preference or travel diary surveys, of small percent of the population, which are 
expensive, time-consuming, and labor-intensive.  To minimize the cost and maximize the 
impact of this study, this research is based on one and a half million license plates, 
matched to household locations (using vehicle registration database), collected over two-
year study period before and after HOV-to-HOT conversion.  Identifying revealed 
relationships between socio-spatial characteristics and user response to the HOT lane 
conversion was the goal of this study. 

Some additional conclusions derived from materials presented in this report and from the 
additional analyses in Khoeini’s (2014) dissertation, include: 

• Overall, the use of the HOT lane is lower than the baseline use of the HOV lane 
because the model is developed for the overall four-hour peak period.  Users are 
much less likely to pay for use of a HOT lane during the shoulders of the peak, 
resulting in an overall lane use reduction. This is expected, and is not a negative 
consequence of implementation.  Managed lanes are only needed under congested 
conditions. 
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• The sensitivity of the model to demographic data was lowest across days of week 
and higher across time of day and site of data collection within the corridor.  
Hence, there may be some local corridor-specific travel relationships that are 
omitted from the models. 

• The Khoeini (2014) work also examined the application of vehicle value, which is 
less expensive and more convenient to collect, as a proxy for household income.  
The analysis demonstrated that the average vehicle value in the HOT lane was 
significantly higher, about $2,100 (23%), and the average vehicle model year was 
about one year newer, compared to the general purpose lanes.  Furthermore, of 
23% difference in vehicle value between HOT and GP lanes, 13% was associated 
with a difference (increase) in model year, and 10% was associated with changes 
in vehicles make/model rankings. 

• Descriptive statistics were used to compare the socioeconomic differences 
between different groups of corridor users using both block group level and 
household-level data.  To name a few major attributes, HOT lane user average 
household income is about 15% higher than users of adjacent GP lanes and HOV 
lane.  In terms of vehicle ownership, HOV lane has the highest average vehicle 
ownership which accounts for 5% difference compared to adjacent GP lanes.  
Moreover, the original HOV lane represented 50% more Asian and 33% more 
Hispanic households, and 8% fewer White households compared to the adjacent 
general purpose lanes.  On the other hand, HOT lane represents 8% more White 
households, and 28% fewer African-American, 33% fewer Hispanic, and 12% 
fewer Asian households.  In terms of home ownership, the HOT lane has 44% 
fewer renters compared to the adjacent general purpose lanes.  

• GIS raster analysis methods were used to visualize and quantify the impact of the 
HOV-to-HOT conversion on corridor commutershed.  The HOT lane 
commutershed is smaller than the HOV lane commutershed and the general 
purpose lane commutershed expanded after the conversion (perhaps in part 
resulting from longer distance commuters switching from the HOV lane to 
general purpose lane, as well as the addition of new long-distance commuters).  
However, the amount of commutershed expansion by general purpose lanes 
dominates the amount of retraction produced by HOT lane, causing an overall 
expansion in the corridor commutershed. 

• In the detailed dissertation, Khoeini (2014) also developed six models at two 
analytical levels: primary aggregated (block-group-level) and advanced 
disaggregated (household-level).  The advantages of the block group level models 
are lower cost, and publically available socioeconomic data, and the disadvantage 
is lower predictive power.  The advantage of household-level models is 
significantly higher predictive power, but at a cost of acquiring household-level 
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marketing data.  Household-level models accuracy increases as the sample size 
and resulting cost of data increase.   

• Generally, the impacts of income, home ownership, and ethnicity 
(Hispanic/Asian/African-American) are the highest in these models.  The fact that 
income and home ownership are significant is intuitive, considering the pricing 
scheme of the conversion.  However, the impact of ethnicity after controlling for 
income is interesting and has not been identified in any previous studies.  One 
potential reason might be the fact that some ethnic groups may be more hesitant to 
acquire transponders.  

• The HOT usage model has substantially better goodness of fit compared to a 
similar HOV usage model in Khoeini (2014).  Significant additional research 
appears warranted to assess the relationships between demographic characteristics 
and HOV formation and retention. 

• The socioeconomic variables associated with household usage of the HOT lane 
corridor were derived from license plate observations linked to demographic data 
sources.  For the models presented in this report, the socioeconomic data were 
retrieved from Census-tract-level level American Community Survey data.  
However, the Khoeini (2014) and Sheikh (2015) dissertations also explore the use 
of household-level marketing data.  Marketing data provide very detailed 
household and individual level attributes with significant low amount of cost (10¢ 
per household), compared to travel surveys which cost about $200/household.  
Marketing data, used in conjunction with associated trip data, have been 
introduced as an alternative for conducting travel behavior studies.  The research 
team believes that the model enhancements provided by the use of household 
level data are worth the investment. 

3.2 HOV-to-HOT Commutershed Micro-Modeling Tool Conclusions 

The overall research effort undertaken in this project employed revealed-preference data 
of I-85 Express Lane users to investigate the monetary value users ascribed to their time 
on the corridor, by examining the toll amounts they paid and the resulting time that they 
saved (Sheikh, 2015).  The dissertation analyses examined the resulting value of travel 
time savings distributions across income segments and among trips of different lengths.  
As reported in the dissertation, the differences in these distributions among lower, 
medium, and higher income households were marginal at best.  Differences among the 
mean, median, and other quartile values were on the order of cents, rather than dollars.  
The results did not indicate that higher income households had the highest value of travel 
time savings results, as may have been expected.  The ranking of value of travel time 
savings by income segment was not consistent across time frames or direction of travel 
(morning vs afternoon commute travel).  The trip length investigation revealed more 
distinct differences between users who traverse the entire length of the corridor and those 
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that take partial trips; in that case, the southbound and northbound differences were also 
more pronounced.  An important consideration in interpreting the results from Sheikh’s 
(2015) dissertation is that they represent the Express Lane users only; that is, only users 
who chose to make paid trips in the HOT lanes.  Non-users, and general purpose lane 
trips by HOT users, were excluded from this analysis. 

The modeling work performed by Sheikh (2015) provided a number of insights into toll 
lane use and the determinants of lane choice decisions.  The initial analysis involved 
binary logit mode choice models which were estimated across different income segments 
and household clusters to examine differences in decision making between low, medium, 
and higher income households and between demographically similar households.  The 
results indicated that the income-segmented models yielded different results than the 
pooled model at the 95% confidence level, but the parameters were largely consistent 
across the three segments.  The clustered households exhibited more variation in their 
responses, particularly for the older and larger households.  For the year studied, rates of 
HOT lane use were fairly consistent across the three income groups for which data were 
available, differing by a maximum of 3.9%.  Disaggregate elasticity values revealed low 
sensitivities to nearly all of the explanatory parameters with the exception of the 
problematic trip distance variable, and income among the higher income users.  These 
elasticity values illustrated varying responses to household income and education, for 
example, across the segmented and clustered households. 

The extensions of the preliminary analysis revealed the benefits of further segmenting 
households by income to illustrate the variety of behavior within the higher income 
households.  This segmentation indicated that the three-segment strategy disguised 
substantial behavioral differences among the highest income households on the I-85 
corridor.  The determinants of lane choice decision-making in the morning peak had 
notable differences from the determinants of the afternoon peak, particularly with regards 
to toll rate sensitivity and the impact of the total corridor segments traversed.  Afternoon 
peak models had better goodness of fit metrics overall, though the pseudo-R2 measures 
for both time frames were under 0.40 in all but one of the cases.  This indicates that the 
there are many other factors in play in lane choice decision making.  Collection of travel 
survey and stated-preference data from these corridor users may play an important role in 
improving the models.  The operational characteristics included in the lane choice 
models, including average lane speeds and transponder counts, yielded similar responses 
across the income segments under examination.  It should be noted that the users 
examined in this study all had registered for Peach Pass transponders, and as such 
represent a self-selecting sample of corridor users.  The similarities in decision-making 
factors across the different models and income groups may result from this effect.  This 
issue could begin be addressed by providing transponders automatically and without cost 
to those users without Peach Pass accounts, though the sample would still be restricted to 
those users who choose to use them in their vehicles. 
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A mixed logit framework improved the modeling results by addressing the issue of serial 
correlation and by estimating the toll amount and household income coefficients as 
random rather than fixed parameters (Sheikh, 2015).  The toll amount coefficients, for 
example, were more appropriately modeled as normal distributions that encapsulate both 
positive and negative values to reflect both the ‘signaling’ and demand-reducing effects 
of toll rates.  Further segmenting the households showed that lane choice determinants 
varied more within the ‘higher’ income segment than across the original three-segment 
structure.  In particular, the five-segment models illustrated lower elasticities with regard 
to corridor segment counts and toll levels for the highest-income households in the 
sample, as well. 

3.3 A Managed Lane Socio-Spatial Modeling Framework 

The objective of this section is to summarize the methods developed and applied in the 
previous sections and to suggest a preliminary analytical framework that could be applied 
to future assessments of similar managed lane and tolling projects.  The data collection 
methodologies, analyses, and results were illustrated in detail in the previous sections.  
Based upon these results, this section proposes a step-wise framework for future 
socioeconomic analysis of managed lane facilities.  Similarly, traffic and revenue studies 
could use the resulting analytical framework to forecast the characteristics and probable 
travel behavior of target market in response to pricing. 

The first step is to collect travel data of the current conditions to establish baseline 
conditions and provide data for use in forecasting future activity levels.  Travel data 
specifically refers to elements that identify users of the corridor and their current travel 
behavior with respect to operations on the corridor.  For example, in this study, license 
plate data were used to identify the households that were currently using the corridor 
before HOT conversion, as well as the associated frequency of use along HOV and 
general purpose lanes.  Considering the available budget and desired accuracy of any 
future study, different methods of data collection and different amount of data could be 
collected. 

The collection and analysis of license plate data, using similar to the methods employed 
in this study, are recommended by the research team.  Based upon the field experience of 
the research team, the net cost for collecting and processing a completed license plate 
record (i.e., a plate that yields matched records in the registration database with fewer 
than eight registered vehicles per address, and the registration address is in reasonable 
proximity to the corridor) is approximately 10¢ per plate.  On average, one two-hour 
session of data collection on a six lane corridor (12 lane-hours) produces 7,719 complete 
license plate records at peak hour and costs less than $800 (including the cost of manual 
license plate extraction).  Accordingly, one lane hour collected video produces 643 
correct license plates costs less than $100.  More advanced methodologies such as 
Automatic License Plate Readers (ALPR), RFID tag readers, and cell phone data, can 
increase the amount of data collected and decrease the cost of data collection once 
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equipment is capitalized.  Automated methods should reduce labor costs and improve the 
future efficiency of future data collection efforts. 

Using the collected travel data, the next step is to establish the corridor commutershed.  
Accordingly, the commutershed could be developed at household-level or at the block-
group-level.  The household-level analysis needs enough data to provide reliable 
frequencies of corridor use per household and to identify frequent users (top 5% frequent 
license plates in this study).  In this study, each household was observed an average of 
five times during the 1860 lane-hours data collection.  This large amount of data 
(1,196,433 complete license plates matched to 241,466 households) enabled this research 
to establish target market groups and support household-level models.  Although large 
datasets enhance the accuracy of the results of future studies, collecting such a large 
amount of data is not necessarily required for all future studies. 

Supplemental studies can assess the amount of data that are required to develop reliable 
models, so that field data efforts can be minimized to control field data collection costs.  
The numbers of collected households and (correct) license plates as a function of amount 
of data collection for this study are illustrated in Figure 10.  These functions could be 
used to plan future data collection efforts.  Because there are so many regular users on a 
commuter corridor, plate data collection yields diminishing returns with respect to 
identification of new households.  For example, if we assume that 1000 lane-hours yield 
198,000 households, analysts can capture about 60% of these households in about 500 
hours. 

Figure 11 illustrates the cost of field data collection at 10¢ per completed license plate.  
For the example above, the cost of collecting about 198,000 households (or 653,000 
license plates) is approximately $66,000.  In the context of a $100 million project, this is 
an insignificant expenditure.  However, this is the cost for data collection along only one 
corridor and studies would need to be conducted throughout the region.  Again, however, 
these costs would be insignificant relative to the projected $16.1 billion cost for the 
complete managed lane system. 

Figure 12 illustrates the relationship between average observation frequency per 
household as a function of amount of data collected (lane hours) with the blue line.  The 
estimated power functions can be used by future researchers to estimate average 
observation frequency per household.  Whereas the average observation frequency is 
estimated across all the license plates, the minimum frequency of the frequent corridor 
commuters (top 5% frequent license plates) has also been illustrated with the red line.  
This latter variable is important for identifying the frequent users for the application of 
developed models.  The slope of variation for average observation frequency is relatively 
flatter than the minimum frequency of top 5% users.  For example, by collecting 252 lane 
hours’ worth of data (or 21 two-hours session for a six lane highway, which corresponds 
to one quarter of data collection conducted for this study), the average frequency is 2.3 
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and the minimum frequency of top corridor users is seven, which is large enough for 
applying all the developed models in this study. 

 

 

Figure 10:  Count of License Plates and Households  
as a Function of Lane-Hours of License Plate Data Collection 

 

 

 

Figure 11:  Data Collection and Processing Cost Estimate  
as a Function of Lane-Hours of License Plate Data Collection 
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Figure 12:  License Plate Data Frequency of Observation per Household  
as a Function of Lane-Hours of License Plate Data Collection 

 

The sensitivity analysis of Khoeini’s (2014) work, show that license plate data along a 
corridor are more sensitive to data collection location than to time (a.m. vs. p.m.), and are 
more sensitive to data collection time than to weekday.  Thus, it is better to spread the 
data collection locations across the corridor and make sure to collect data in both the 
morning and afternoon peak periods. 

The third step is to acquire socioeconomic and demographic data.  For block-group-level 
analysis, the most recent publicly available American Community Survey data should be 
used.  The block groups that need to be incorporated in the analysis are those that 
intersect with the developed commutershed.  However, the modeling results based upon 
disaggregate household-level data are preferable (Khoeini, 2014).  For household-level 
models, the licensing cost for the full set of marketing data used in this study was 
approximately 10¢ per household.  Considering the multi-million cost of the entire 
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expensive and more efficient. 
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In general, any big-data collection methodology, which can produce both travel and/or 
socioeconomic data, could be applied to the models developed in this study.  Specifically, 
the proposed methodology in this study is the concurrent application of license plate data, 
registration data, and marketing data. 

3.4 Additional Research 

The research presented in this report indicates that macro-level and micro-level models 
can be used to predict corridor response.  Although these models are developed from very 
large data sets of revealed preference observational data, these models cold still be 
significantly improved.  The research team proposes that the following research efforts be 
conducted to assess the potential impacts of the pending $16.1 billion in managed lane 
investments slated for implementation in the Atlanta Metropolitan region: 

• Targeted sub-regional household stated-preference surveys should be conducted 
along corridors of interest, in parallel with license plate data collection and analysis.  
Resulting data would enhance models designed to predict how users are likely to 
respond to the implementation of new managed lanes (or alternative managed lane 
strategies). 

• Given the relatively low cast of marketing data (10¢ per household), which provide 
very detailed household and household-level socioeconomic attributes, additional 
efforts should focus on demonstrating the accuracy of these data and integrating these 
disaggregate data into managed lane corridor assessments.  A larger research effort 
that combined purchased marketing data with stated preference survey data 
collection, and with follow-up focus groups for a subset of participants managed lane, 
would verify the accuracy and reliability of the household-level data and would 
provide new stated preference and revealed preference data that could be used to 
enhance model development. 

• The acquisition of transponders, which are required for use of the HOT facility, may 
differ significantly across income and ethnic groups, which necessarily affects the 
model outcomes predicted in the dissertation work by Khoeini (2014) and Sheikh 
(2015).  The research team believes that a separate choice model should be developed 
to predict the establishment of Express Lane accounts and acquisition of transponders 
for managed lane participation as a function of spatial and demographic variables.  
These new models could be used to inform strategies designed to increase 
transponder adoption rates and facility participation across demographic groups. 

• Significant additional research appears warranted to assess the relationships between 
demographic characteristics and HOV formation and retention.  If carpools are being 
considered as a viable strategy for managing future transportation demand, much 
more information on the causal variables affecting carpool formation and retention is 
needed. 
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• Future studies should be implemented to assess the sensitivity of model development 
to the amount of license plate data collected and processed.  The goal of this 
supplemental research would be to predict the amount of data needed to obtain 
reliable results, so that field teams do not collect more data than are necessary to 
develop reliable models (controlling field data collection costs).  Further assessment 
of the sensitivity of license plate data collection with respect to time, day, and 
location of data collection would also help in model development and to better 
understand potential uncertainty impacts of derived models. 

4 References 

AirSage (2013). http://www.ourenergypolicy.org/wp-content/uploads/2014/11/ 
The_Future_of_Transportation_Studies-1.pdf 

Atlanta Regional Commission (2011). Atlanta Regional Travel Survey Final Report.  
Atlanta, GA.  2011 

Börjesson, M. (2008).  Joint RP–SP Data in a Mixed Logit Analysis of Trip Timing 
Decisions.  Transportation Research Part E: Logistics and Transportation Review, 
44(6), 1025-1038. 

Burris, M., S. Nelson, P. Kelly, P. Gupta, and Y. Cho (2012). Willingness to Pay for 
High-Occupancy Toll Lanes. Transportation Research Record: Journal of the 
Transportation Research Board 2297, 47–55. 

Burris, M., K. Sadabadi, S. Mattingly, M. Mahlawat, J. Li, I. Rasmidatta, and A. Saroosh 
(2007). Reaction to the Managed Lane Concept by Various Groups of Travelers. 
Transportation Research Record: Journal of the Transportation Research Board 
1996, 74–82. 

Cohen, J., and P. Cohen (1975). Applied Multiple Regression/Correlation Analysis for 
the Behavioral Sciences. 

Colberg, K. (2013). “Investigating the Ability of Automated License Plate Recognition 
Camera systems to Measure Travel Times in Work Zones.” Master’s Thesis, 
Georgia Institute of Technology. 

D’Ambrosio, K. (2011).  Methodology for Collecting Vehicle Occupancy Data on Multi-
Lane Interstate Highways: A GA 400 Case Study.  Master’s Thesis. Georgia 
Institute of Technology, School of Civil and Environmental Engineering. August 
2011. 

Devarasetty, P.C., Burris, Mark, Douglass Shaw, W. (2012). The value of Travel Time 
and Reliability-evidence from a Stated-Preference Survey and Actual Usage. 
Transportation Research Part A: Policy and Practice 46, 1227–1240. 

Dill, J., and A. Weinstein (2007). How to Pfor Transportation? A Survey of Public 
Preferences in California. Transport Policy 14, 346–356. 



 

50 

 

 

Doherty, S. (2009). Emerging Methods and Technologies for Tracking Physical Activity 
in the Built Environment. Transport Survey Methods: Keeping up with a Changing 
World, 153-190. 

Douma, F., J. Zmud, and T. Patterson (2005). Pricing Comes to Minnesota: Attitudinal 
Evaluation of I-394 HOT Lane Project. Transportation Research Board Annual 
Meeting. 

ELSAG North America (2013). "ALPR Products and Solutions". Available from: 
http://www.elsag.com/alpr_applications.htm. 

Golob, T., D. Bunch, and D. Brownstone (1997). A Vehicle Use Forecasting Model 
Based on Revealed and Stated Vehicle Type Choice and Utilisation Data. Journal of 
Transport Economics and Policy , 69-92.  

Goodall, N., and B.L. Smith (2010).  What Drives Decisions of Single-Occupant 
Travelers in High-Occupancy Vehicle Lanes?.  Transportation Research Record: 
Journal of the Transportation Research Board, 2178(1), 156-161. 

Guensler, R., V. Elango, A. Guin, M. Hunter, J. Laval, S. Araque, S. Box, K. Colberg, F. 
Castrillon, K. D’Ambrosio, D. Duarte, K. Kamiya, S. Khoeini, E. Palinginis, L. 
Peesapati, C. Rome, A. Sheikh, K. Smith, C. Toth, T. Vo, and S. Zinner (2013). 
“Atlanta I-85 HOV-to-HOT Conversion: Analysis of Vehicle and Person 
Throughput.” Prepared for the Georgia Department of Transportation, Atlanta, GA. 
Georgia Institute of Technology. Atlanta, GA. October 2013. 

Hess, S., M. Bierlaire, and J. Polak (2005).  Estimation of Value of Travel-time Savings 
using Mixed Logit Models.  Transportation Research Part A: Policy and Practice, 
39(2), 221-236. 

Hultgren, L., and K. Kawada (1999). San Diego’s Interstate 15 High-Occupancy/Toll 
Lane Facility Using Value Pricing. ITE Journal 69.6. 

Khoeini, S. (2014). Modeling Framework for Socio-economic Analysis of Managed 
Lanes. Dissertation. Georgia Institute of Technology. Atlanta, GA. 2014. 

Khoeini, S., M.O. Rodgers, V. Elango, and R. Guensler (2012). Sensitivity of 
Commuters’ Demographic Characteristics to License Plate Data Collection 
Specifications: Case Study of I-85 High-Occupancy Vehicle to High-Occupancy 
Toll Lanes Conversion in Atlanta, Georgia. Transportation Research Record: 
Journal of the Transportation Research Board 2308, 37–46. 

King, D., M. Manville, and D. Shoup (2007). The Political Calculus of Congestion 
Pricing. Transport Policy 14, 111–123. 

Kressner, J.D., and L.A. Garrow (2012). Lifestyle Segmentation Variables as Predictors 
of Home-Based Trips for Atlanta, Georgia, Airport. Transportation Research 
Record: Journal of the Transportation Research Board, 2266, 20–30. 



 

51 

 

 

Kriger, D S., S. Shiu, and S. Naylor (2006). Estimating Toll Road Demand and Revenue 
(Vol. 364). Transportation Research Board. 

Lam, T.C., and K.A. Small (2001).  The value of Time and Reliability: Measurement 
from a Value Pricing Experiment.  Transportation Research Part E: Logistics and 
Transportation Review, 37(2), 231-251. 

Li, J. (2007). Potential Users’ Perspectives on Managed Lanes Insights From a Focus 
Group Study. Public Works Management & Policy 12, 416–430. 

Liu, H.X., X. He, and W. Recker (2007).  Estimation of the Time-dependency of Values 
of Travel Time and its Reliability from Loop Detector Data.  Transportation 
Research Part B: Methodological, 41(4), 448-461. 

Lorenzo, G.D., J. Reades, C. Francesco, and C. Ratti (2012). Predicting Personal 
Mobility with Individual and Group Travel Histories. Environment and Planning-
Part B 39.5, 838. 

MacCullagh, P., and J. Nelder (1989). Generalized Linear Models. 

Munnich, L., and J. Loveland (2005). Value Pricing and Public Outreach: Minnesota’s 
lessons learned. Transportation Research Record: Journal of the Transportation 
Research Board 1932.1 (2005): 164-168.  

Ross, C.L., R. Guensler, J. Barringer, A. Danner, M. Allen, E. Barrella, J. Doyle, J.I. 
Nelson, and L. Zuyeva (2008). Congestion Pricing Response: Study for Potential 
Implementation in the Metropolitan Atlanta Area. Downloaded from:  
"http://www.cqgrd.gatech.edu/sites/ 
files/cqgrd/files/gdot_congestion_pricing_study_full.pdf". 

Schönfelder, S., H. Li, R. Guensler, J. Ogle, K.W. Axhausen (2006). “Analysis of 
Commute Atlanta Instrumented Vehicle GPS Data: Destination Choice Behavior 
and Activity Spaces.” Published in the CD-ROM Proceedings of the 83rd Annual 
Meeting of the Transportation Research Board. Washington, DC. January, 
2006.Sheikh, A. (2015). Consumer Response to Road Pricing: Operational and 

Demographic Effects. Dissertation. Georgia Institute of Technology. Atlanta, GA. 
2015. 

Sheikh, A. (2015). Consumer Response to Road Pricing: Operational and Demographic 
Effects. Dissertation. Georgia Institute of Technology. Atlanta, GA. 2014. 

Small, K.A., C. Winston, and J. Yan (2005).  Uncovering the Distribution of Motorists' 
Preferences for Travel Time and Reliability.  Econometrica, 73(4), 1367-1382. 

Stopher, P.R., and H.M. Metcalf (1996). Methods for Household Travel Surveys (Vol. 
236). Transportation Research Board. 

Suh, W., R. Guensler, M. Hunter, A. Guin, J. Anderson, K. Colberg, and S. Zinner 
(2013). “Work Zone Technology Testbed.” Final Report. Prepared for the Georgia 



 

52 

 

 

Department of Transportation, Atlanta, GA. GDOT Research Project RP 11-15. 
Georgia Institute of Technology. Atlanta, GA. October 2013. 

Sullivan, E. (1998). Evaluating The Impacts of the SR91 Variable-Toll Express Lane 
Facility. Sacramento, CA. 

Supernak, J., and J. Golob (2002). San Diego’s Interstate 15 Congestion Pricing Project: 
Attitudinal, Behavioral, and Institutional Issues. Transportation Research Record: 
Journal of the Transportation Research Board 1812, 78–86. 

Szumilas, M. (2010). Explaining Odds Ratios. Journal of the Canadian Academy of Child 
and Adolescent Psychiatry, 227–9. 

Wang, P., T. Hunter, A.M. Bayen, K. Schechtner, and M.C. González. (2012). 
Understanding Road Usage Patterns in Urban Areas. Scientific Reports 2, 1001. 

Xi, Yanzhi (2010).  Effective GPS-Based Sample Size for Urban Travel Behavior 
Studies.  Dissertation.  Georgia Institute of Technology. Atlanta, GA. 2010. 


